当执行CALL SUM1指令后,执行SUM子程序的最后一条指令 ret n 时,SP的变化是()。
A: 增加2
B: 增加n+2
C: 减2
D: 减少n-2
A: 增加2
B: 增加n+2
C: 减2
D: 减少n-2
举一反三
- 当执行CALL SUM1指令后,执行SUM子程序的最后一条指令 ret n 时,SP的变化是( )
- ${X_1},{X_2},...,{X_n}$是来自均匀分布X~U(-a,a)的样本,用矩估计法估计参数a为() A: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ B: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ C: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$ D: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
- 当$|z|<0.5$时左边序列$x[n]$为 A: $[(\frac{1}{2})^n-2^n]u[-n-1]$ B: $[(\frac{1}{2})^n+2^n]u[-n-1]$ C: $[2^n-(\frac{1}{2})^n]u[-n-1]$ D: $[2^n+(-\frac{1}{2})^n]u[-n-1]$
- 如果N=2,Sum(N)是一个函数,且Sum(1)=5,那么语句:Set Sum=Sum(N-1) +N将把值6赋给Sum。If N = 2, Sum (N) is a function and Sum (1) = 5, then the statement:Set Sum = Sum (N-1) +NThe value 6 will be assigned to Sum.