二元溶液,T,P一定时,Gibbs—Duhem方程的正确形式是()
A: Xdlnγ/dX+Xdlnγ/dX=0
B: Xdlnγ/dX+Xdlnγ/dX=0
C: Xdlnγ/dX+Xdlnγ/dX=0
D: Xdlnγ/dX–Xdlnγ/dX=0
A: Xdlnγ/dX+Xdlnγ/dX=0
B: Xdlnγ/dX+Xdlnγ/dX=0
C: Xdlnγ/dX+Xdlnγ/dX=0
D: Xdlnγ/dX–Xdlnγ/dX=0
举一反三
- 【单选题】二元 溶液 , T, P 一定时 ,Gibbs—Duhem 方程的正确形式是 (). A. X 1 dlnγ 1 /dX 1 + X 2 dlnγ 2 /dX 2 = 0 B. X 1 dlnγ 1 /dX 1 + X 2 dlnγ 2 /dX 1 = 0 C. X 1 dlnγ 1 /dX 2 + X 2 dlnγ 2 /dX 1 = 0 D. X 1 dlnγ 1 /dX 1 – X 2 dlnγ 2 /dX 1 = 0
- 8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$
- 设$f(x)$是连续的奇函数,则定积分$\int_{-1}^1 f(x)dx=$ A: $2\int_{-1}^0 f(x)dx$ B: $\int_{-1}^0 f(x)dx$ C: $\int_{0}^1 f(x)dx$ D: $0$
- dx=___________d(ax) , (a≠0)
- 马歇尔-勒纳条件用数学式表达为( ) A: Dx + Dm > 0 B: Dx + Dm = 1 C: Dx + Dm < 1 D: Dx + Dm > 1