• 2022-10-28
    证明:OLS 残差与拟合值不相关, 即[tex=4.5x2.0]iVnAungfAfbTO4sSmKCrClubWckXurV2qBxN9W4ghRg=[/tex]。
  • 证明:[tex=19.857x2.214]iVnAungfAfbTO4sSmKCrCs+A9wbAonqVisclu2BYIANOF2yoyGGoFlkQ5owgodIVimBiDyVEaDg4Z4UP5aPK7a8kplhiUaNHV5nGFjAoM+KoVu5nKCjv3CnNUKFIvw9V5uK6KbQkD8R/2qbaF0d2u2BFaeqoKEDji5MhzcyQIX59mfajDGVE0b+EGnS1NINN[/tex]甴于[tex=3.714x2.0]JQo/EbetfJHqIOb7NGCJQS38szk0pxy5GDybldpmJ8E=[/tex], [tex=7.143x2.0]pYAyuL7NIFYQB/EjeyTOO/ONkKEbKbKMl3qI/xKVjwg2OQv3T+sK2J8ly2qjgt5n[/tex] 教材中已证明 [tex=0.429x1.357]VJTYmdtttZvFrSMSWqFgqw==[/tex],因此, [tex=4.5x2.0]iVnAungfAfbTO4sSmKCrClubWckXurV2qBxN9W4ghRg=[/tex], 即 [tex=13.429x3.714]H6v7AYQYDzx/HkssKUdZGSYwbfLqlJ6NwKs98S+FBeFtRAfA8vwObfv98Toh+PU0mDNgBWEA26LQdTroN22r02tX4s+D39WgYXM6aW7o1W8lPnMxwU4d87MIJNC7vcBd0h0VERqAJHafpSS1N1NzYGGZeXdDeT/kaTWJH2CkTWc=[/tex], Y的拟合值与残差无关。

    内容

    • 0

      以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)

    • 1

      如果要求酶促反应[tex=6.857x1.286]+b2d6Pn0yf6H9vzTVvCAXflluCsZ5UJlaYSNyn/zWcU=[/tex],则[S]应为[tex=1.571x1.286]tFn74N9G2GAYOdGRcbEaaA==[/tex]的倍数是 A: 4.5 B: 9 C: 4 D: ​5 E: 80

    • 2

      证明在[tex=3.429x1.5]sxcttVGDimoEcRijqaheotabc46owls+w0erxQTRFO0=[/tex]中4与[tex=4.786x1.5]hO9SJ0PS0+qwZ2bD3k8u2ae8CwzjWbp/u1KmlIYwY68=[/tex]无最大公因子.

    • 3

      若w=1,x=2,y=3,z=4,则条件表达式w<x ? w:x的值是( )。 A: 4 B: 3 C: 2 D: 1

    • 4

      证明:曲线积分有估计式[tex=13.643x2.786]gE3/xyQY+/PN5JJ22LQZtOiIqU+EaBTkEYWCC+6tHk3jhLL0owsizCYgUr+W7SI09GyKk5D0AKdvzs7OHTDQiXD0eAOg5cAWh4lQrkKvDnM=[/tex],其中[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]为积分路径的长度,[tex=4.5x2.0]+p6C3GwYvZROoY/ydkReC6WYfuXe35votylqH6vLMw4=[/tex][tex=4.214x1.643]McrF8nInkMohFn6p3T4dc5KNU9rte+g3O5P1a6g4/FA=[/tex].