举一反三
- 证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9
- 假设x=4,y=2,m=5,n=4,w=12,t=9,则经过表达式(w=x 0 9
- 证明定理[tex=1.786x1.0]4DgM86TLEdT+SY2szxku8A==[/tex] 的(4),即设[tex=0.786x1.0]cj+ar+3r72WJpbnL/JXCXA==[/tex]为群,证明:[br][/br][tex=10.214x1.357]OFsNs1mVzik4hGfQcLbAvIJ7qETFhZTqJbD2lqD5Pnmpr5AUDhTx+SRs1rVok4/yL7JiNjYaHT9F0i7R5ncO8g==[/tex]
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- def function(x): print(x,end=‘ ’) x=4.5 y=3.4 print(y,end=’ ‘)x=2y=4function(x)print(x,end= ‘ ‘)print(y)程序结果是: A: 2 3.4 2 4 B: 2 3.4 4.5 3.4 C: 2 4 2 4 D: 4.5 3.4 2 4
内容
- 0
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
- 1
如果要求酶促反应[tex=6.857x1.286]+b2d6Pn0yf6H9vzTVvCAXflluCsZ5UJlaYSNyn/zWcU=[/tex],则[S]应为[tex=1.571x1.286]tFn74N9G2GAYOdGRcbEaaA==[/tex]的倍数是 A: 4.5 B: 9 C: 4 D: 5 E: 80
- 2
证明在[tex=3.429x1.5]sxcttVGDimoEcRijqaheotabc46owls+w0erxQTRFO0=[/tex]中4与[tex=4.786x1.5]hO9SJ0PS0+qwZ2bD3k8u2ae8CwzjWbp/u1KmlIYwY68=[/tex]无最大公因子.
- 3
若w=1,x=2,y=3,z=4,则条件表达式w<x ? w:x的值是( )。 A: 4 B: 3 C: 2 D: 1
- 4
证明:曲线积分有估计式[tex=13.643x2.786]gE3/xyQY+/PN5JJ22LQZtOiIqU+EaBTkEYWCC+6tHk3jhLL0owsizCYgUr+W7SI09GyKk5D0AKdvzs7OHTDQiXD0eAOg5cAWh4lQrkKvDnM=[/tex],其中[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]为积分路径的长度,[tex=4.5x2.0]+p6C3GwYvZROoY/ydkReC6WYfuXe35votylqH6vLMw4=[/tex][tex=4.214x1.643]McrF8nInkMohFn6p3T4dc5KNU9rte+g3O5P1a6g4/FA=[/tex].