0-1背包问题中,背包容量是9,5种物品的重量分别是:3 2 4 3 55种物品的价值分别是:4 5 8 5 7m[i][j]表示:背包容量为j,可选物品为i,i+1,...,n时0-1背包问题最优值如下。最优解向量为()[img=554x273]17e441dfc172128.png[/img][/i]
A: 1 0 1 01
B: 0 1 1 01
C: 1 0 1 1 0
D: 0 1 1 1 0
A: 1 0 1 01
B: 0 1 1 01
C: 1 0 1 1 0
D: 0 1 1 1 0
举一反三
- 0-1背包问题中,背包容量是9,5种物品的重量分别是:3 2 4 3 55种物品的价值分别是:4 5 6 5 6m[i][j]表示:背包容量为j,可选物品为i,i+1,...,n时0-1背包问题最优值。m[4][5]的值为()[/i] A: 5 B: 6 C: 4 D: 11
- OPT[i][w]=max{OPT[i-1][w],OPT[i-1][w-k*w[i]] +k*v[i],0<=k<=n[i]}。这是()问题的递推关系。[/i][/i][/i][/i] A: 0/1背包 B: 恰好装满的0/1背包 C: 完全0/1背包 D: 多重0/1背包
- OPT[i][w]=max{OPT[i-1][w],OPT[i-1][w-k*w[i]] +k*v[i],0<=k<=n[i]}。这是()问题的递推关系。[/i][/i][/i][/i] A: 0/1背包 B: 恰好装满的0/1背包 C: 完全0/1背包 D: 多重0/1背包
- 0/1背包问题是一种特殊的背包问题,装入背包的物品不能分割,只允许或者整个物品装入背包,或者不装入,即xi=0,或1,(0<=i
- 5个物品,其重量分别是{2, 2, 6, 5, 4},价值分别为{6, 3, 5, 4, 6},背包的容量为10,采用0-1背包算法,则最终被装入背包的分别为第几个物品。( ) A: 1、2、5 B: 1、3、5 C: 1、2、4 D: 1、2、3