支持向量机(Support Vector Machine, SVM)是通过寻找超平面对样本进行分隔从而实现分类或预测的算法,分隔样本时的原则是使得间隔最大化,寻找间隔最大的支持向量。
对
举一反三
- 在支持向量机理论中,需要寻找两类分类间隔最大的最优超平面,距离这个最优超平面( )被称为支持向量(Support Vector)。 A: 最近的样本 B: 最远的样本 C: 等距离的样本 D: 选项都包括
- 支持向量机(SVM)算法是一个在有限的样本空间中寻找一个超平面能将不同类别的样本分开且间隔最大的二分类模型。( )
- 支持向量机是寻找最大化样本间隔的边界
- 关于支持向量机SVM,说法正确的是: A: 边缘(margin)是决策边界与任意样本之间的平均距离 B: 支持向量 (support vector) 位于最大边缘超平面附近的点 C: 分类间隔为1/||w||,||w||代表向量的模 D: 决策边界只会被支持向量影响,跟其他点无关
- 在支持向量机理论中,寻找出两类样本之间分类间隔最大的最优超平面,该超平面作为决策依据,用于区分样本的类别。
内容
- 0
SVM 原理描述不正确的是( )。 A: 当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机 B: 当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机 C: 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机 D: SVM 的基本模型是在特征空间中寻找间隔最小化的分离超平面的线性分类器
- 1
关于SVM的描述正确的是:( ) A: 支持向量机模型定义在特征空间上的间隔最大的线性分类器 B: 支持向量机可以通过核技巧,这使之成为实质上的非线性分类器 C: 支持向量机的学习策略就是间隔最大化 D: 支持向量机训练时候,数据不需要归一化或者标准化
- 2
线性可分支持向量机利用间隔最大化求得最优分离超平面
- 3
以下关于支持向量机的描述不正确的是( )。 A: 它是二分类模型,但可以扩展为多分类模型 B: 训练支持向量机就是找到最优分割线、平面或超平面,使得样本距离分割线、平面或超平面最远 C: 样本集中的所有样本均是“支持向量” D: 样本线性不可分时可以投影到高维空间,转换成线性可分情况
- 4
训练支持向量机就是找到最优分割线、平面或超平面,使得样本距离分割线、平面或超平面最远。