设L为抛物线y2=x上从点A(1, -1)到点B(1, 1)的一段弧. 则ea7c25f405f10a415fdbcadbed9bdba0.png0377eee5e8506d70d117a3b21d3e68a6.png
举一反三
- \(已知L为抛物线y^2=x上从点A(1,-1)到点B(1,1)的一段弧,则\int_{L}xyds=(\,)\) A: \[\frac{4}{5}\] B: \[\frac{3}{5}\] C: \[\frac{2}{5}\] D: \[\frac{1}{5}\]
- 计算\(\int_L {xydx} \),其中\(L\) 是抛物线\(y^2=x\) 上从点\((1, - 1)\) 到点\((1,1)\) 的一段弧。 A: \({3 \over 4}\) B: \({1 \over 2}\) C: \({2 \over 3}\) D: \({4 \over 5}\)
- 设L:曲线y2=x从点(1,-1)到(1,1)的弧段,函数f(x,y)在L上连续,则() A: B: C: D:
- 已知\(L\)为抛物线\({y^2} = x\) 上从点\(A\left( {1, - 1} \right)\) 到点\(B\left( {1,1} \right)\) 的一段弧,则\(\int_{\;L} {xyds} {\rm{ = }}\)( )。 A: \({3 \over 5}\) B: \({4 \over 3}\) C: \({5 \over 3}\) D: \({4 \over 5}\)
- 设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3