设L:曲线y2=x从点(1,-1)到(1,1)的弧段,函数f(x,y)在L上连续,则()
A:
B:
C:
D:
A:
B:
C:
D:
举一反三
- 设L为抛物线y2=x上从点A(1, -1)到点B(1, 1)的一段弧. 则ea7c25f405f10a415fdbcadbed9bdba0.png0377eee5e8506d70d117a3b21d3e68a6.png
- 设L是抛物线x=y2上从O(0,0)到A(1,1)的一段弧,则曲线积分∫L2xydx+x2dy=______ A: 0 B: 2 C: 4 D: 1
- 已知\(L\)为沿上半圆周 \({x^2} + {y^2} = 2x\)从点 \((0,0)\)到点 \((1,1)\)的一段弧,把对坐标的曲线积分 \(\int_{\;L} {P(x,y)dx + Q(x,y)dy} \),化成对弧长的曲线积分为\(\int_{\;L} {[\sqrt {2x - {x^2}} P(x,y) + (1 - x)Q(x,y)]} ds\) 。
- 已知\(L\)为沿抛物线 \(y = {x^2}\)从点 \((0,0)\)到点 \((1,1)\)的一段弧,把对坐标的曲线积分\(\int_{\;L} {P(x,y)dx + Q(x,y)dy} \) ,化成对弧长的曲线积分为\(\int_{\;L} { { {P(x,y) + 2xQ(x,y)} \over {\sqrt {1 + 4{x^2}} }}} ds\) .
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )