x^2/a^2+y^2/b^2=1,设x=acost,t是参数(化方程为参数)
举一反三
- 已知双曲线x^2/a^2-y^2/b^2=1,设x/a+y/b=t,若以t为参数,求出双曲线的参数方程.
- 设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求E(x^2+y^2)
- 求解方程组[img=218x63]1803072f0e0e849.png[/img]接近 (2,2) 的解 A: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
- 求解方程组[img=218x63]1803072e5daced1.png[/img]接近 (2,2) 的解 A: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
- 计算二重积分[img=159x48]18030731271aaff.png[/img], D 是单位圆盘[img=89x26]180307312f6708b.png[/img],应使用的语句是 A: Integrate[Sqrt[x^2+y^2 ], {x^2+y^2≤1}] B: Integrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] C: NIntegrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] D: Integrate[Sqrt[x^2+y^2 ],{x^2+y^2≤1,{x,-1,1},{y,-1,1}}]