设 [tex=8.357x1.357]87ofOnvwe0TPZTKE0h3mQCEFEeqxiTdG5vUv4k19/VI=[/tex] 求 [tex=3.357x1.357]vuFEx7dOJ0yLLxFAKCZWUA==[/tex]
举一反三
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 设 [tex=16.571x4.5]5Cmgwu1OybHBcWwAUtmUQdgTeSTqBtCKnqbhBHzdyU78xET2jFiV2KvdLTnbQyhDEpW/bNskYpGHxjwzjaMI0dIFHSeLUP/CJWMlNNVuyEHBn353ro3tZlVCZap8JTq6oi61MrzYq7pomyOuE9maEFUp1lp8dxSK1E3CHTgpzD7gAQhL8llCVqWi5omkXaDS[/tex],求 [tex=3.357x1.357]CM6A4P25TOlG4dYJMedi6w==[/tex] 和 [tex=3.357x1.357]qYCd4rAm5C+f943DwO/2zw==[/tex]
- 设[tex=5.5x1.357]jO6lZeZZ3OdVBdz43/a9oQ==[/tex],[tex=0.857x1.0]9FikB2YJlXD9Uda+jSZ+aQ==[/tex]上有如下两个关系:[p=align:center][tex=7.857x1.357]pd9l8znrdYExN6Olk0rlGnNU6qc4HWiNE29Cv4d3un4=[/tex]或[tex=3.071x1.357]40x9aRMI5okS8j0R1kO/bQ==[/tex][p=align:center][tex=8.357x1.357]KL8XkO3xClX+ZKoVjS47eSwU3UUzbwIBmTUU5XJTM/0=[/tex]求下列复合关系.(1)[tex=2.786x1.214]XzRNdcOzSrvLVZHLjp7LMD71fRT67VBA6Zd1uTtpBa8=[/tex];(2)[tex=2.786x1.214]h+sgJJ+hO7O6atHnTmbPI3Q7/1cgdmNXsz+WDhMAsds=[/tex];(3)[tex=4.357x1.214]XzRNdcOzSrvLVZHLjp7LMPh7lTZBxYOZ3aFX2Q3W6CE=[/tex].