• 2022-06-04
    证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.
  • [b]证明[/b]:定理4(3)                          [tex=15.0x2.786]PldD2zMOA/JMeoDCr0Fi3gFsLd5VD1XUIvan/ZKvpIcoikP6/uIzQ4iqnEJ8GeGO46/a1yiETewpBOmWAc4aQ0heeIENpwWo4POKTu9nwsPbC8U3wr00yAp17rHI0cf6DZT8+ltfp0qicK7dmRG2VN2Be7OPDZ3qgotm7iztJNoB3TpP7vVajj7lmnnlRPe8[/tex]   [tex=5.786x2.786]MB+9S7l5VLdD9CqMX1evX82G82ndEGjesODs5os7qqKwLW/KmJl5hJ6gqb+hzEHz7ExOlsajhTK8k4dxpbGLD6z1fJXmOYp1hRN/mUMhYM4=[/tex] 定理4(4)  [tex=27.429x2.786]ePGiJUXNTsJNBRVGLh5/VTHqo25yB+k7/wzmBflVlP7CU1EEYb/qwoEXm3vwg/X+B+/J+92EdTp+zuDMA3O35eGTq/xgmhf8zBUrhd5sAy+gUBLXZofNNZyJceGMJ5/4wm/D+gfuQFdhwEfEOnkhb9sO7SemgY2f9/Gav9FGEg4A4RA/nkT9iThSa17PLFBvVMv8q+Ywu6EQCJMdsF/0BOHfj4Z7WhUtNweJRjH5OYs=[/tex] [tex=8.643x1.214]SS1enwl120PB+ZjeeEi/2FnbQ8rdIqppi81xnpnngOZ2ccujSQJC0TpX1AuekOv7Z3bvANAF1saYE+dRzSsa13XKF32jylUvzlq40ebwNjE=[/tex]   或   [tex=6.5x1.214]8UWIo0zfNwaLDzdG2dZ/1gBHYyQpAfyk5W0yyFCLLEurPscxu6+3ubsKHPc23nMcIfkdf413eJjKvkKVpFDa9A==[/tex] [tex=22.357x3.357]SS1enwl120PB+ZjeeEi/2CFDlGMmw1j/t8MEyWLmSvzGxelpSUXcjhSBkBgxMhZ/o5rVs26LRtcETNkT6xzUNLwEM/iWfWH2p2Na8zrPiYlrt+qKhgNDsJVSQQjeLqxImDmNa1hhsLZ5jzV3ovuEFJ+mPQi8PvWmCYgpiT0gm4vakvODMX87v6jaeH8ZDApGy7iol/d9mvzULT8vqZph/g==[/tex]定理6     [tex=15.286x3.357]WC6iJqQGT+iLHfTsthZ9rBA5LqSUegYbHiZ/JZOmclm6QaA3TR+DRUmau+UQlF4UWE4VVoKcp4kYFIw0jPPp+lBKEYTSqml1TLDrr6psREIQlsV/Dt0BP3nn+zRfFd7TNc4paVOsYFsl6sLO5Qh9R6BR5O2nxzROzeNLau5hHH3lNUN0StrrHUiX+g9Tv8wp[/tex][tex=18.5x5.214]rZM5/OPAdr7aX+kNl9iwpLAWW567sZ5VooX9jGZvxVlUZfC8ybQpa3a078qZ7S+WPPPjgWKKLefEGt7tycg084Jm+XjTKvC2SNntwu+24gBCpneYSlPKy1PEgucBlzi4lUh2MC6SwZWAi+W+Mhs+b/dRBUI985sATevJuSJQllsw8CL74GMQsHlVUtrWtXcBaLGVH3H0d/Bc0O+eh+GNuUC2wAyhcUR2kEfp8ZoDzuRP2ujR19a1kwmNMWD0yqZ0bgn9kyyWKxSv1MUn4CWVmA==[/tex] 定理9 由  [tex=4.571x1.214]0RhtLSUbABbeB8kNKvr0I2HxFNf4fhG4A8sgy/zqxnk=[/tex]得 [tex=5.286x3.286]Jd2qGPJQue7xaHpt2xEP1gawotFW6HZnifk9vYWmAqw+26g8L/D+EPicMTXBTD6w[/tex] 且 [tex=14.0x3.286]Glpog6qvE0QmxPeLpXdutjGyBUKVfQtgPrhSI5NukWFH9oJPdk2M4w5aZietrkLTGZGiXhcdUzLI1U8/dno3X2u88SUlELQhwDw2C0tjteEhtv6KHmIAsYvMNKFmT1rI04SOGvwdPDtUiB3mnCToDg==[/tex] 又设[tex=5.143x3.286]68JKTpIfiaN/UFc5LwkAwtzGqy1wrZJ4LDZnQC+XpNxc92JEMbxI6i8AyV7W1dhd[/tex] 则   [tex=4.714x1.214]cPKYfvD+ONefnB0/L6180UBjGCXuzARu278GSxoVd2c=[/tex]于是   [tex=16.357x3.286]AmGsccc3SVujUlSX+cEZ7x0LebzxRmH5oGakr5KS2/d/XW6cU4GC9OXF+28JOGzKkpqu+5c3j1/ciwsmV8+5I0EUYoS/C1PLQqOv4U+HmRw=[/tex]得到 [tex=6.714x3.286]bs4sUGgPY1mJbgedktmD2f4zrdszyHFjCdL6aw/pbNSz+KsxEBwmpiiTTU5Dq/vf4tXiiuy5Hgj7yxqbQxN1rg==[/tex] [tex=4.571x1.214]OATl9+bzSkBTkY5dx3AdpItvRz3TF5BMyKOIkwoYtTw=[/tex] 同理                                                                         

    内容

    • 0

      进一步证明积分第一中值定理(包括定理9.7和定理9.8)中的中值点[tex=3.857x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex].

    • 1

      解释第一福利定理和第二福利定理的区别。这两个定理为什么有用?

    • 2

      简述福利经济学第一定理和第二定理

    • 3

      下列结论正确的是( ) A: 单调有界定理可以证明区间套定理 B: 区间套定理可以证明闭区间上连续函数根的存在性定理 C: 区间套定理可以证明聚点定理 D: 区间套定理不能证明有限覆盖定理

    • 4

      戴维南定理的证明用到了( )定理。 A: 基尔霍夫定理 B: 诺顿定理 C: 叠加定理 D: 替代定理