验证式 ( B -17) 。提示:[tex=17.143x1.5]iLt6h0UcHTUkOOQSNyECJsJIbpITLUHwmOsM0LAbdeS+aJVaCAGL27dqIClaHRtBPKuTsgzaJOMtSfrQlFiiBg==[/tex]
举一反三
- 求最大公因式:[tex=17.143x1.5]uBXIGXcp39XOTdC+oVx7byUOTCBwnJ4r1c+JdupvgypLX2kFg+2WnKDw3kwgfu4Q[/tex]
- 在圆柱体[tex=3.929x1.429]Xai2DD0/3DANiXsryld7Pg==[/tex]和平面x=0,y=0,z=-0及z=2所包围的区域,设此区域的表面为s:验证散度定理
- 求最大公因式 [tex=5.0x1.357]bnEwFCchggZalhoVeBvlzBal+k0r0DcWGD12Q43dXhw=[/tex][tex=17.143x1.5]/aSXGCwVlv2Cp56C/P2kFMbTH2/dgWMjLouT3Po7PlvYAkGekZir2EO8tjzzeNYXKFX1lEF5n27uwPpEWhJSNQ==[/tex].
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]