直线过点(0,1,3)并且与平面 : x + 2y - 2z -5 = 0垂直,则直线与平面的交点坐标为( )
A: [img=55x25]1803bbf108068cb.png[/img]
B: [img=55x25]1803bbf11019a27.png[/img]
C: [img=69x25]1803bbf118604ab.png[/img]
D: [img=55x25]1803bbf120f5e3c.png[/img]
A: [img=55x25]1803bbf108068cb.png[/img]
B: [img=55x25]1803bbf11019a27.png[/img]
C: [img=69x25]1803bbf118604ab.png[/img]
D: [img=55x25]1803bbf120f5e3c.png[/img]
举一反三
- 直线过点(0,1,3)并且与平面 : x + 2y - 2z -5 = 0垂直,则直线与平面的交点坐标为( ) A: [img=55x25]1803bbf2439ae9a.png[/img] B: [img=55x25]1803bbf24c34995.png[/img] C: [img=69x25]1803bbf253cb2ae.png[/img] D: [img=55x25]1803bbf25bfb124.png[/img]
- 直线过点(0,1,3)并且与平面 : x + 2y - 2z -5 = 0垂直,则直线与平面的交点坐标为( ) 未知类型:{'options': ['', '', '', ''], 'type': 102}
- 求不定积分[img=121x54]17da653839aa6ae.png[/img]; ( ) A: log(x^2 + 3*x + 25/4)/4 + (5*atan(x/2 + 3/4))/4 B: log(x^2 + 3*x + 25/4)/4 C: (5*atan(x/2 + 3/4))/4 D: log(x^2 + 3*x + 25/4)/4 - (5*atan(x/2 + 3/4))/4
- 用一般迭代法求方程f(x)=0的根,将方程表示为同解方程[img=71x25]1803a5909f0a124.png[/img],则f(x)=0的根是() A: y=x与[img=69x25]1803a590a7d1f55.png[/img]的交点 B: y=x与x轴的交点的横坐标 C: y=x与[img=69x25]1803a590a7d1f55.png[/img]的交点的横坐标 D: x轴与[img=69x25]1803a590a7d1f55.png[/img]的交点的横坐标
- 设三阶方阵[img=117x75]17da6265af67565.png[/img]有特征值[img=36x21]17da6265c0f8ef3.png[/img],则[img=26x15]17da6265d451088.png[/img] ,[img=27x17]17da5b7f743dcc3.png[/img] . A: x=1, y=1 B: x=2, y=1 C: x=3, y=0 D: x=0, y=3