关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入! 2022-06-06 单位矩阵算不算是行阶梯型矩阵?(单位矩阵是没有零行的啊),等价标准型矩阵?(单位矩阵是不存在其他分块的零矩阵啊) 单位矩阵算不算是行阶梯型矩阵?(单位矩阵是没有零行的啊),等价标准型矩阵?(单位矩阵是不存在其他分块的零矩阵啊) 答案: 查看 举一反三 一个可逆矩阵的行最简型是单位阵,意思就是可逆矩阵经过若干次初等行变换可以化为单位矩阵,此时可逆矩阵与单位阵行等价。 下列说法正确的是: 单位矩阵唯一|单位矩阵有无穷多个|零矩阵唯一|零矩阵有无穷多个 下列命题中正确的是: 任意一个矩阵都存在逆矩阵|单位矩阵一定存在逆矩阵|对角矩阵一定存在逆矩阵|零矩阵存在逆矩阵 与单位矩阵相似的矩阵是 A: 数量矩阵 B: 对角矩阵 C: 单位矩阵 D: 可逆矩阵 例2中的矩阵A,在Jordan标准型理论中称为什么? A: 单位矩阵 B: 对称矩阵 C: Jordan块 D: 零矩阵