求函数[img=192x40]17da653862ff7b6.png[/img]的导数; ( )
A: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1)
B: cos(x)/sin(x)
C: cot(x)*(cot(x)^2 + 1)
D: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1)+cot(x)
A: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1)
B: cos(x)/sin(x)
C: cot(x)*(cot(x)^2 + 1)
D: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1)+cot(x)
举一反三
- 已知\( y = \ln (\sin x) \),则\( y' \)为( ). A: \( {1 \over {\sin x}} \) B: \( {1 \over {\cos x}} \) C: \( \cot x \) D: \( - \cot x \)
- $\int {{{x\cos x} \over {{{\sin }^3}x}}} dx = \left( {} \right)$ A: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\tan x + C$ B: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\cot x + C$ C: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\cot x + C$ D: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\tan x + C$
- 函数\( y = \ln \cos x\)的导数为( ). A: \(\tan x\) B: \( - \tan x\) C: \(\cot x\) D: \(- \cot x\)
- 函数\(y = \ln \sin x\)的导数为( ). A: \( - \cot x\) B: \(\cot x\) C: \(- \tan x\) D: \(\tan x\)
- \( \int {\csc x(\csc x - \cot x)dx} = \)( ) A: \( - \cot x - \csc x + C \) B: \( - \cot x + \csc x + C \) C: \( \cot x + \csc x + C \) D: \( \cot x -\csc x + C \)