• 2022-06-03
    将下列函数展开为指定的Fourier级数.[tex=5.143x2.143]65STRfmeJpsBGxWEnjmP0kX8xuXtOB6OBcoykUtzIiU=[/tex],[tex=3.929x1.357]fHypTF8qEraADhqFVLuxbQ==[/tex]展开成正弦级数.
  • 将[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=3.071x1.357]n/I8HIoImMmRN5VGZfpFtw==[/tex]上进行奇延拓,并以[tex=1.071x1.0]tieuzjBYrMcmxP3HXZSPGQ==[/tex]为周期在[tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex]上延拓得函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex],则在[tex=2.214x1.357]DOK5Ip/oSA2wzrczqQwvlw==[/tex]上,[tex=4.643x1.357]j84H3d3yMmhsKFDYeR26vw==[/tex]且连续,在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处间断.[tex=2.286x1.214]eLBgEDdPD/kt2B1FOUSmKA==[/tex],[tex=5.643x1.214]0Buyx7KH1aleDuiaauNjEGf4yM1g/kjKm9cStwL/AhA=[/tex],[tex=25.071x2.714]/YffIRtp26mW13KkCkkp8fofVk0UyK9k3VhqZph61/lscVJrE03926DzN5MyM3ks4aO1E8TqNIE9Rs49LthJDvgj1pbbB58qZiRLyWef7uLmdPLU596pg2jQUcx0z7t+uWCWWgWK2jVsn/80e5fiougDBzfw0heiztXMdABjiUV7gtifMjIA7IKTRy+a/h4MGv7VyFlstvbFj4kogwy39w==[/tex],[tex=4.714x1.214]CnA4OlS2oxz/MG+5oZZ7dQ==[/tex],所以[tex=11.143x3.286]FsNoZ/UUoCpjj/2l2AfQVKIrVPuewYxx3JN6M7WYsVU+dQC1TvKprUPUZ+UHnIimDa1ND7BMUSaVLOWyAN/0GS9zcy7XYblxom9+VwEgqqQ=[/tex],[tex=4.357x1.143]a+kYkJzOqu6FoviQOl1y+AxKjL+LsOTvXkqlgOECQ40=[/tex].

    内容

    • 0

      将下列函数在指定区问展开成 Fourier 级数:[tex=11.857x3.357]ACpG7W/lXiEwdW69ASBj8+5HXJfZv/ZXk4ZkXDu+ufs5b9AVOr3CdDr2ywJkw+BegO5H1EZjG7CAiZR8WeuYj+51mT40eneADL21Nmm/So63WTqz/DORGDaSQKT+6Ffs[/tex]

    • 1

      将下列函数在[tex=3.143x1.357]o3MZ96CxwVd5dngDYfrTX9EsEv2u5BEbW4gCu24hpuQ=[/tex] 上展开成 Fourier 级数:[tex=11.214x3.357]ACpG7W/lXiEwdW69ASBj85n+db2ikKt/Rt6RS+Jf+Mn/2EEdGpqKT5eVBcGiqqdte6juJJ+K0RV9kF1COe6BOZSuXGs4HVJiVDkDi6uxSmaUSQHHb4czt3HuJaSXuFt3[/tex]

    • 2

      将下列函数展开为指定的Fourier函数:[tex=16.071x4.5]0Oc6OdDyTxw5ASPscCgHydtCB/dxGjGxb12cPk8nYUHMHlTcM0JODqgBtqzMhS1DNbw7x/eT8PLDEgPY7/posvHNZRMyIwLYpfFaz/YIpjH2dRlVr0Y5hnIDHOo35KCwN/7bqMdMZTeHKIbZMl6RCq8eMaonHwhNRpM6Fr7pNjtADcNEzpdk75NNB6vkHLQCVJJHRy7+QgUbk7F5Me+/mg==[/tex],正弦函数

    • 3

      把下列函数展开为Fourier级数,它们在一个周期内的定义分别为:[tex=9.5x1.357]hDdrqFMI1NHZdXTInhvkJr9TsvbsMXI5DsjVwMqcdAk=[/tex]

    • 4

      以[tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex]为中心将下列函数展开为泰勒级数:[tex=2.429x1.0]nGHgerWU1+wr4vI2Akufvg==[/tex].