土的压缩系数和压缩模量的关系可用下列()项公式表达。
A: Es=\frac{1+a}{\text{e1}}
B: Es=\frac{a}{\text{1+e1}}
C: Es=\frac{e1}{1+a}
D: Es=\frac{1+e1}{a}
A: Es=\frac{1+a}{\text{e1}}
B: Es=\frac{a}{\text{1+e1}}
C: Es=\frac{e1}{1+a}
D: Es=\frac{1+e1}{a}
举一反三
- 压缩模量ES与压缩系数a之间的关系为() A: Es=a/1+e1 B: E=1+e1/a C: ES=a/1-e1 D: Es=1-e1/a
- $\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( ) A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
- 设方阵`\A`满足`\A^2 - A - 2E = 0`,则`\A^{-1}=` ( ) A: \[\frac{1}{2}(A - E)\] B: \[\frac{1}{2}(A + E)\] C: \[\frac{1}{4}(A - E)\] D: \[\frac{1}{4}(A + E)\]
- 6.下列函数中,在其定义域上有最大值的是()。 A: $f(x)=\frac{x}{{{\text{e}}^{x}}},\ \ \ x\in (0,+\infty )$ B: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,+\infty )$ C: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,1)$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,1]$
- 双曲抛物面$z=xy$被圆柱面${{x}^{2}}+{{y}^{2}}={{a}^{2}}$截下部分的面积为( ) A: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}+1]$ B: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}-1]$ C: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}+1]$ D: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}-1]$