$\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( )
A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
举一反三
- 以下关系式中,正确的是( )。 A: $2\arctan x+\arcsin \frac{2x}{1+{{x}^{2}}}=\text{ }\!\!\pi\!\!\text{ }$,$|x|\ge 1$ B: $\arctan x=\arcsin \frac{x}{\sqrt{1+{{x}^{2}}}}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$-\infty \lt x \lt \infty $ C: $\arcsin x+\arccos x=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x|\le 1$ D: $\arcsin x=\arctan \frac{x}{\sqrt{1-{{x}^{2}}}}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x| \lt 1$
- Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.
- 对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$
- 积分$\int_0^1 x \arctan xdx=$()。 A: $\frac{\pi}{4}+\frac{1}{2}$ B: $\frac{\pi}{4}$ C: $\frac{\pi}{4}-\frac{1}{2}$ D: $\frac{1}{2}$
- 函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)