角α的终边经过点P(x,-2)(x≠0),且cosα=36x,则sinα等于( )
A: 66x
B: 66
C: 306x
D: -66
A: 66x
B: 66
C: 306x
D: -66
举一反三
- 【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
- 函数\(y = { { \sin x} \over x}\)的导数为( ). A: \( { { x\cos x - \sin x} \over { { x^2}}}\) B: \( { { x\cos x + \sin x} \over { { x^2}}}\) C: \( { { x\sin x - \cos x} \over { { x^2}}}\) D: \( { { x\sin x + \cos x} \over { { x^2}}}\)
- 设$f'(x)=\sin x$且$f(0)=-1$,则$f(x)$的一个原函数为 A: $1+\sin x$. B: $1-\sin x$. C: $1+\cos x$. D: $1-\cos x$.
- 求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
- 已知\( {y^{(n)}} = \cos x \),则\( {y^{(n + 2)}} \)为( ). A: \( \sin x \) B: \( - \sin x \) C: \( \cos x \) D: \( - \cos x \)