• 2022-06-06
    试求经过原点且切直线[tex=5.429x1.214]JLgwjda7DLAaEe/Tx6y3mA==[/tex]于点[tex=3.0x1.357]PJrDG4oV19/4EMIL1uLsOQ==[/tex]及切直线[tex=4.429x1.214]b2mEzWx+I67y8XfyOehOaQ==[/tex]于点[tex=3.0x1.357]JshCjEryEqDhTnmjRQ+7zg==[/tex]的二次曲线方程.
  • 设所求方程为[tex=16.071x1.429]RdcVlIohCGohoMfSztV9gMVLcQFRcj+SqwvTNbsev7l7BZMwJStD5j/QvOhnrGNlD3obzH/BrKEgwgNrpjBmCg==[/tex],则切线方程为[tex=15.214x1.357]neTK4uXIv2gGWgDWeDTB4ckI3eRPMaXl6mhxFhErA2IfLfb30GTKsxjuIBlxxYyC[/tex].因为[tex=4.929x1.357]fLHbkNMuxP8r6jtB7hyD+A==[/tex].所以[tex=14.071x1.357]g3MAoNAYpzkh6cm+29t0U4syvydCM+VnBNE5wmFHOUy94BpyzGlRc9KxjMUp1OpE[/tex].从而[tex=16.5x1.357]Txm/qYzNUixpijb8KxuCgXdxZyKfRGeLj2iFkairvxkSR1bovtErZVwF0KOwoGXw0IC5mV/9AtUSXkkJvxIgZw==[/tex].即[tex=5.429x1.214]JLgwjda7DLAaEe/Tx6y3mA==[/tex].因此[tex=13.429x2.429]XHQxN0ZdS5bcDs76R7wXZHhN34BBnDFNSAXq0gSNm/fBpIkRAYvCLOPPnoJ6K3h4G0pvz8wN7JK8bUjAvmgGnw==[/tex],即[tex=9.429x4.071]fnpmC2J6JmQBLyo5NmGAz8pH4Xh6NMBLflEXlLOgwE/nNsaXF4tS3KLVrsj50GKlGy0rsgwvR2ep4IV13Qzn/EXzwGN/JYfIi2VWcnF0rwBBtQzmAKFi9BD1cDcIU/uMkzil0MbUqUvcnsTu0Doe5THwLKujh5OVGzL32T31Bi8=[/tex],而过[tex=3.0x1.357]JshCjEryEqDhTnmjRQ+7zg==[/tex]的切线方程为[tex=16.5x1.357]mP+vxggDW9j0oL0rEKjuFW5goNjuAPkZGr/XM/4cm+mzyUG7Ze8kiUB0ldzMzBX8G3kpVD/m+pcFaDBM7nF9hA==[/tex],同理,有[tex=8.071x4.071]fnpmC2J6JmQBLyo5NmGAz4UIvbB2JzQTcMYV3z4QoshahmyhcklTi5Tsa/2XCvRS5mUm7moMu1DMm9GOaRzNfkUxxy+xDs7jFWgoexBH+S1M7oEMzGF0Bv9Fe5Kw9jOskLyKnrIwinRvK/xMvU6sBmGSqTNrVoBCrNWSpe8o708=[/tex].联立以上方程,可得[tex=16.857x1.357]pnQwi3mvJsyAzLRh+mEMQkvkatLJfyv7I42Y9s64Vi+qBBLiazGTd+dmZu1OG8VwSZE0P0P4D/kePVQ6MTvJVg==[/tex].所以所求方程为[tex=12.214x1.429]Y3zNTFqiv330by3z8h4OPUOXpl2MPbjjmd6gfbu6na6nbj/joDutPTYTOCxEsgqs[/tex].即[tex=9.929x1.429]oOIexSdF/w4nn8wJAS4IfADfNEsnwZWePyebx1bXreA=[/tex].

    内容

    • 0

      求曲线[tex=5.571x1.5]MRfZhrh1hjuTqeAxutf5Ug==[/tex]在点[tex=3.0x1.357]FCYfgfHEdi7wYALAfEwSbg==[/tex]处的切线方程及法线方程.

    • 1

      已知仿射变换[tex=7.5x3.357]7EJHVCtO2IWq3KpdB+jQsrB6api6XTiW4A20y5aW7YymMkVp0qHatRVP19cjthZ01ElzkxUK4+vVySoCmigRXKwvmkL10VprKdWcwgXCx9SKq6/hBX1iSKg6/TNViX8b[/tex]点 [tex=3.0x1.357]yPUhbQ8RR6Ahm8pLrd+dXg==[/tex],[tex=3.0x1.357]+mU0F5pfy5+QCxfHCF5fPQ==[/tex],[tex=3.786x1.357]PjRerXYUyafamT10YTp+YA==[/tex] 直线[tex=3.714x1.214]7DrKVIUVoMIApbd1h8P2uA==[/tex][tex=1.786x1.0]2jYgJvLfv5X3zptggEoLLQ==[/tex],试求:①点[tex=0.786x1.0]XhVNsLJz3AkjM19LvAbO7w==[/tex],[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]的象点;②点[tex=0.786x1.0]XhVNsLJz3AkjM19LvAbO7w==[/tex],[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]的逆象点;③直线[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的象;④直线[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的逆象.

    • 2

      求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?

    • 3

      某消费者的效用函数为[tex=10.786x1.357]FoPNSCeAIS4ycmrTEziJOkEvp//Oeca8E+NQFZwHMuM=[/tex], [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的价格分别为3和1,则他的收入提供曲线是 A: 始于原点,斜率为2的射线 B: 平行于x轴的直线 C: 平行于y轴的直线 D: 与x的恩格尔曲线相同

    • 4

      求过点[tex=3.214x1.357]fyi8grxDXpT6FJvWok62Zg==[/tex]且平行于平面[tex=5.857x1.214]GEgkxgrIqQYW+JhC87U65w==[/tex],垂直于直线[tex=5.929x3.929]7EJHVCtO2IWq3KpdB+jQsngDJDzsZoCmJnvA93PqqRakO8MuwWrm9SGUTOPXo7l7EBQiG8dx6PyQ3F36rBTTdcyfu0lqbj1fmwUoadXhTyY=[/tex],的直线方程.