• 2022-06-05
    半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的均匀带电半球面,其面电荷密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex], 求该半球面球心处的场强. 
  • 解法一 在球面上任取一面元[tex=1.214x1.0]L3vgblGNG9LN8RxZvGf2zw==[/tex],[tex=7.571x1.214]iDZ4smiz6hjEUBPIGdknu98k1enBh96JaliltZoZKR9lG/ChJ7VCImqEUWJ3OuxgPVT0X+4KsXcAz6vY3MzYxjfW4zJPY7z3RHDBxxfd+VA=[/tex], 此面元所带电量[tex=3.571x1.214]F45N1ZdXhLhHFa7DwELCajKjjCujWapSQY7nUSi9W1Y9HzsE1RZF4qayBRlE/7Yk[/tex].电荷元[tex=1.071x1.214]5AwGUpcDYtGCyDm9KLjTpg==[/tex]在球心[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]处所激发的场强[tex=1.429x1.0]KF0ZZRnhouVS25qMRX4/3hTN5EXsGIghdAvHBOPvrYw=[/tex]方向是沿径向的,如图8-1(a)所示.由对称性可知,合场强沿[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]轴负方向, 所以只需求出电荷元产生的场强在[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]轴方向上的分量和 .电荷元在球心处激发的场强在[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]轴上的投影为[tex=9.0x2.571]/gSUYhSBfhs9AJVS8xF/cpL51jOwsj23fkHZN7gUOkB7rYzO9Qd0siM0f+PSpQkMQFHY3qaCxgY9C0KyXxzh//K91+pokJNGZLvrOs3zXyJF53RCY8TGMV8HBnPUpyYX[/tex]总场强为[tex=29.857x5.5]qeiYnKXLEhyhuGRg8yLtr1OZ/yrKU0TGAM5P+RtSbwSjAoMIMAOzbITQtgXlIeg8fpZow/jCIOQ18cs86M2JJcF7eLdQF3P1Cgly5AZe1xvhzOymvlqgYWv3y3OS6zRkD0jAdGQr9Za08mPgoBgDYuCsfOuzNSsFR605NlHhNEYZf1RaxLqLcFC0+xf6evbSZZEc32hAiRB2Y9fxINHh/vwLfsOZVqpckHnUh8LJ/HeJLabCXcmftU/2Una0VC1jHtJyCeAthUhSqz+WhUA90l2Oeom01hNVkv6pUpQb/Vb/AQyP/gOqsfxvcl1HO9CiTpikSPp2myg+2VYjBAONbwfUbCwYMBNjJGdjDrs19Sk++0PqO/XlnRg5+jycY17bM9dkubIIxwn8An2jDc7XmsEuFJr2Z3CpyS5yCzYJrH6CcmlO6urObBXfljApLMaw[/tex][img=667x358]17aa608afa2546e.png[/img]矢量形式为[tex=5.143x2.429]vKRKKqwtEZbB4TX7ATof1Up0pgiLbCjiwsGa1qjfIQiQl6rhn0MAsP0r6Yf1+XgtndZbxP0a4qhMlI3AN5bKi0lr7YVnVvd70xSY1U8a+Uk=[/tex]解法二 将半球面视为若干半径不等的平行小圆环,如图8-1(b)所示.利用均匀带电圆环在其轴线上一点所产生的场强结论计算. 在带电半球面上取一半径为[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]的带电圆环,其面积[tex=4.429x1.214]rBTVfauxCdIoGwsczrUj0584W9a67uD0nSdfkUe3QeQVW1bh5s86ICqUxyIMEy70[/tex],带电量为[tex=7.286x1.214]bQnjFKopC0bXHMweBFOcc5B0lEBQ5w9jlKxMjN9YRpXxTfNXHcDXrMGijh3jTvwEG/XcmadCizTz1JkhWSLzGZfOP9RZTbwuDkJY5ZfoQjo=[/tex], 它在[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]点激发的场强沿[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]轴负方向,其大小为[tex=16.929x2.929]9+3Qts+yhl5lhRuJYk9uimJDjx2osbx2+eACb27HB0pN/TMAzAu2vczkQ919NJkzmqXA1ttx91HXbY7CV6Ph5oE7YNW8VYwvf6Try1dl5yMEkL91OgTtBP/oGhDRXv9A88QYRYTmKqN6TQCJCL6VgIQ0EoT1sIXOPsH73CUdAYc3BYD1ezflAnuKRvXUJ0dn7p7CSLC9gFV3LRzcxkeGfM+9k5du+G48xAdoiSr6GU8OtRJu822RtaM9oAQ0j6cDkB2Thn7mC6GiknWw+KzE7Q==[/tex]由图可知: [tex=17.929x1.429]JS8x9EBGKKNzigzzk05n9r4mYTddmge0H5Y9jZHIo8FxTcKbxQGkD8kg3F7UficjKlHAWDSwl5Hu9+9qGSGhO7KYJpyBEYv/x+wT8CqNmSbVdm4h29at7BgoORLp6Ch5[/tex], 所以[tex=22.929x5.786]qeiYnKXLEhyhuGRg8yLtrxU4EsDVA3G6Pn7dZk023qdz99dgH259O6oMQJy9h9cAeBYtgqRwTVEvzYvaA/1gCDA0y5IyxWwgwTKpTEzxZmP4QGzabr/O+WUnk5Rmh8O7G2Psz5gtnUfrBS+UMnrXX8RU4Xm5sdPbUKrtaAsDENofNqPioYKXQs63Dt5aJCNdhVkV9LiKa29zu7SZ5GuYgz+fgNEUId4GUDTQ7I1wN/zTsEXX9miU7RqeLE0vJ9E6Nvv6YmyyFbZ8ZTnnURmIcF9pJO6slUpNG43QwsZFncbd/B0kOkl21WrJDFgKfOI0HTSUZqNZwhEQoIw6QPDHFLdgZt2vs5aT7zcXtxP0zbNaMV6j8EuloWbH5tlnjA0cleoH+LIpvn4i0JKUzcJcEBPRanW5gvg6HfNYNBUTrf0/es30JEW/1agCojvHUIPFgkV9ei1z/NcrHhEZaIuTxcZCYmribAXebfJIgFVo0qQYvhTWStqAfUhGNXgeAKI9eKCT3ICfHcGRW+ssuiymdg==[/tex]矢量形式为[tex=4.929x2.286]Xrp+PAV2XFWZXx2rIlYNYs/AGgmyVGv8xL3IMphvY2KH+af+haRmSFLoTCTi37GCvwyOHBd1qrYhrbKnpr5igooHmvWQ3Zd7OMP3MF7EBnc=[/tex]

    内容

    • 0

      一个半径为 R 的半球面,均匀地带有电荷,电荷面密度为 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex],求球心处的电场强度.

    • 1

      一半径为[tex=0.786x1.0]zsZuwXILiEhI/NPsp8IDFQ==[/tex]均匀带电的半球壳,电荷面密度为[tex=0.571x0.786]4QDoRYQAmQuNuD9B75pL1Q==[/tex]。求球心处电场强度的大小。

    • 2

      半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的半球壳,均匀地带有电荷,电荷面密度为[tex=0.571x0.786]bTuYhbYJt2T7PxILJvgPTQ==[/tex],求球心处电场强度的大小.

    • 3

      一半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的半球面均匀带电,电荷面密度为 [tex=0.571x0.786]KHE6aYFkrlyxxuvvfRVtTQ==[/tex]。求球心处的电场强度。

    • 4

      一半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的均匀带电圆盘,面电荷密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]。设无穷远处为零电势参考点, 求圆盘中心点[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]处的电势。