求下列函数的单调区间、极值点和极值:(1)[tex=5.786x1.429]Xm05iQpjFRQdMYAxm+jG+zwiUFXX4xeKzSwAMWlGbEM=[/tex](2)[tex=3.5x1.214]tpMMnmsx8LGYaN6bnbpqKOAOTE+7uSs6mak76hnmsSQ=[/tex]
解 (1)[tex=17.357x3.214]Ck4j1YFlvVH5wCAykOEMi/hNt3rz1SN6Ynul+/Gq4y+QTYIlkevzjxl4Xikp9cTsLIKwueS1w5sWUs9g4AGKV+nsd2obGkWhP6WQrUS55C4+fCwIfEdsXAQ71Tv+k1O652pru/lWPfAF0bjgnD8G6uAirWFdiil5QyuHNHDO8huntBa1PD/OZuDCVwsCtlqJ[/tex][tex=3.5x1.357]6yMHdmT32LapUbNqAqeDng==[/tex]和[tex=3.5x1.357]xB17pbbFZIkfcopRUo8/DA==[/tex]为单调递增区间;(0,2)为单调递减区间.x=0是极大值点,极大值为7;x=2是极小值点,极小值为3.(2)[tex=12.643x1.357]B5FfKE7N4lpSc/v98W7ubWJ6NVee79z/c+ULBBxd5UwGnONznmZxLTMidvQ7VNbkq5fH7txbYNY/d+MVXwTe98AfzQC9ZXgHjxHD1xEqkBg=[/tex]x=0是极大值点,极大值为-1.[tex=3.5x1.357]6yMHdmT32LapUbNqAqeDng==[/tex]为单调递增区间;[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]为单调递减区间.
举一反三
- 求下列各函数的单调区间:[tex=3.5x1.214]tpMMnmsx8LGYaN6bnbpqKOAOTE+7uSs6mak76hnmsSQ=[/tex];
- 求函数[tex=7.071x1.429]fI9TPEq0nm4WMmvgrPNenQ==[/tex].的单调区间、极值点和极值;
- 求函数的极值点和单调区间:[tex=9.286x1.286]77iLyBjKiRP08resBh+OZnJPvtTiAEPihHqgePMXo8Y=[/tex] .
- 求函数的极值点和单调区间:[tex=8.429x1.5]SrUU0vEX1SGcJW0Au+cao3IulFKnvBu2GvYN27CLofQ=[/tex] .
- 求下列函数的单调区间、凹凸区间、极值点、拐点和渐近线,并绘图(图略).(1) [tex=6.643x1.5]bfylM61K4fB2dxr0OSsfGnNoGCHA31PVTv+V6O1K8rw=[/tex](2)[tex=7.643x1.571]v8BogKFXW30N+HMJ7QR6DhxEDs5D0riUpoj095rhlGc=[/tex](3) [tex=3.714x2.143]X1YpNX45Pb+t3RD9Lv2Xa/npVx6iPUE04M2Y4K2k/cw=[/tex](4) [tex=5.071x3.0]4TWEbfJ+QFPbBo6PXWTsCrjc66tVrHBOTlDUBxhSpARz8/MfCO/nUo/gE3SyIffw[/tex](5)[tex=6.571x2.429]gt+k1kCw/+VFBVaKddmG6PvDvxiTdyZFXDwIPBeuGlw=[/tex](6)[tex=5.643x1.429]Hzyd6Qvm69qjRqgBIuKTx/cTmFyy56Dt2K/GC7NoCdc=[/tex](7) [tex=7.143x1.214]CwtdUElTamN1NqF0aKHeWGdaXEazoOnz3w3c67izzuE=[/tex](8)[tex=4.714x2.786]cxjZEag+Wbr67lAUIC3Slk2OV17yHgezOhFRferr5F0=[/tex].
内容
- 0
试求下列函数的单调区间及极值点[tex=4.857x1.214]y/nD9My2CEB2GNa4USLvDg==[/tex]
- 1
求下列函数的单调区间、凹凸区间、极值点、拐点和渐近线,并绘图(图略).8)[tex=4.714x2.786]cxjZEag+Wbr67lAUIC3Slk2OV17yHgezOhFRferr5F0=[/tex].
- 2
求函数[tex=5.857x1.429]zC1W7aNDbIltMGQhYtIv7w==[/tex]的单调区间与极值
- 3
求下列函数的单调区间与极值.[tex=8.786x1.571]wx7aM8JzZKoGkzBFlsdRhUgv5mfWu8yI7ar7E4/JiPc=[/tex].
- 4
求函数 [tex=5.786x1.429]GLMPxbZq9QHc/ZeVssuWku1E2ugXIHcTKMcEj0VXhpg=[/tex] 的极值.