设A为n阶可逆矩阵,A*是A的伴随矩阵,则 。
A: |AD|=|A|
B: |A*|=|A|n-1
C: |A*|=|A|n
D: |A*|=|A-1
A: |AD|=|A|
B: |A*|=|A|n-1
C: |A*|=|A|n
D: |A*|=|A-1
举一反三
- 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。 A: -A* B: A* C: (-1)A* D: (-1)A*
- 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。 A: -A* B: A* C: (-1)nA* D: (-1)n-1A*
- 设`A`为`n`阶方阵,`\A^**`是矩阵`A`对应的伴随矩阵,若R(`\A^**`)=1`,则A的秩为( ) A: `n` B: `n-1` C: 小于`n`皆可 D: 小于`n-1`
- 设n阶矩阵A的伴随矩阵为A*,证:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|^(n-1)
- 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于( )。 A: -A<SUP>*</SUP> B: A<SUP>*</SUP> C: (-1)<SUP>n</SUP>A<SUP>*</SUP> D: (-1)<SUP>n-1</SUP>A<SUP>*</SUP>