下列变量属于离散型随机变量的是( )
A: {3≤x≤8│x∈Z}
B: {3≤x≤8│x∈R}
C: {3≤x≤8│x∈Q}
D: A和C
A: {3≤x≤8│x∈Z}
B: {3≤x≤8│x∈R}
C: {3≤x≤8│x∈Q}
D: A和C
举一反三
- 下列变量属于离散型随机变量的是( ) A: {3≤x≤8│x∈Z} B: {3≤x≤8│x∈R} C: {3≤x≤8│x∈Q} D: A和C
- 用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。判断推理证明是否正确。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) 前提引入 (2)Q(c)∧Z(c) (1)∃- (3)∀x(Q(x)→R(x)) 前提引入 (4)Q(c)→R(c) (3)∀- ( 5 )Q(c) (2) 化简 ( 6 )R(c) (4)(5) 假言推理 ( 7 )Z(c) (2) 化简 (8)R(c)∧ Z(c) (6)(7) 合取引入 (9)∃x(R(x)∧Z(x)) (8)∃+
- 构造下式的推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)⋀Z(x));结论:∃x(R(x)⋀Z(x))。(1)∃x(Q(x)⋀Z(x)) P(2)Q(c)⋀Z(c) ES(1)(3)∀x(Q(x)→R(x)) P(4)Q(c)→R(c) US(3)(5)Q(c) T(2)I(6)R(c) T(2)(4)I(7)Z(c) T(2)I(8)R(c)⋀Z(c) T(6)(7)I(9)∃x(R(x)⋀Z(x)) EG(8)以上推理是有效的。 A: 正确 B: 错误
- intx=5,y=8,z=7;表达式z=!(x>y)||(x=1,y=3)计算后的结果 A: x=1,y=3,z=1 B: x=1,y=3,z=0 C: x=5,y=8,z=0 D: x=5,y=8,z=1
- 设有变量定义int x, a=3, b=4;则语句x = ( a = 0 ) && ( b = 8 ); 执行之后各变量的值为______。 A: x=0,a=0,b=8 B: x=1,a=3,b=4 C: x=1,a=0,b=8 D: x=0,a=0,b=4