lim(1-3x)^(1/x)=_____(x→0)
举一反三
- 求lim(x->0)(1+2x)^(1/x)和lim(1-3x)^(1/x)的级限,
- ①lim(x→∞)sin(1/x)/(1/x)等于多少?②lim(x→0)sin(1/x)/(1/x)等于多少?
- \( \lim \limits_{x \to 0} { { x - \sin x} \over { { x^3}}} \)=( ) A: 0 B: 1 C: 6 D: \( {1 \over 6} \)
- \( \lim \limits_{x \to 0} { { x - \arcsin x} \over { { {\sin }^3}x}} = {1 \over 6} \)
- 下列极限计算正确的是( ). A: \(\lim \limits_{x \to 0} { { \left| x \right|} \over x} = 1\) B: \(\lim \limits_{x \to {0^ + }} { { \left| x \right|} \over x} = 1\) C: \(\lim \limits_{x \to 0} {(1 - {1 \over {2x}})^{2x}} = {e^{ - 1}}\) D: \(\lim \limits_{x \to \infty } {(1 - {1 \over {2x}})^{2x}} = e\)