举一反三
- 某质点的运动方程为x = 6 + 3 t -5 t 3(SI),则该质点作( )
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 请写出n=6皇后问题,回溯法求解得到的第一个解是: ( ) A: 1 2 3 4 5 6 B: 2 4 6 1 3 5 C: 3 6 2 5 1 4 D: 5 3 1 6 2 4
- 求解方程:[tex=7.714x1.5]3FFD+v/21Xhfm5t6bRuHxVWQCHf4sjMKCNr5/qQdIGsFsn3totasTWLWIVzA5vco[/tex]
- 函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)
内容
- 0
以下数组定义中,错误的是( )。 A: int<br/>x[2][3] ={1, 2, 3, 4, 5, 6} ; B: int<br/>x[][3] ={0} ; C: int<br/>x[][3] ={{1, 2, 3} , {4, 5, 6} } ; D: int<br/>x[2][3] ={{1, 2} , {3, 4} , {5, 6} } ;
- 1
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
- 2
下面代码的输出结果是( )。 s=[4,3,6,2] t=sorted(s) print(s) print(t) A: [4, 3, 6, 2] [2, 3, 4, 6] B: [2, 3, 4, 6] [2, 3, 4, 6] C: [4, 3, 6, 2] [4, 3, 6, 2] D: [2, 3, 4, 6] [4, 3, 6, 2]
- 3
数学建模的正确步骤为()<br/>(1)模型构建<br/>(2)问题分析<br/>(3)模型改进<br/>(4)求解模型<br/>(5)模型检验<br/>(6)应用模型解决问题 A: (1)(3)(5)(4)(2)(6) B: (1)(4)(3)(2)(6)(5) C: (2)(1)(4)(5)(3)(6) D: (2)(1)(4)(5)(6)(3)
- 4
输出九九乘法表。 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9