有一劲度系数为 k 的轻弹簧,原长为 l0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变 为 l1.然后在托盘中放一重物,弹簧长度变为 l2,则由 l1 伸长至 l2 的过程中,弹性力所做的功为[ ].
A: 21 d ll kx x .
B: 21 d ll kx x .
C: 2 0 1 0 d l l l l kx x .
D: 2 0 1 0 d l l l l kx x .
A: 21 d ll kx x .
B: 21 d ll kx x .
C: 2 0 1 0 d l l l l kx x .
D: 2 0 1 0 d l l l l kx x .
举一反三
- 有一劲度系数为k的轻弹簧, 原长为\(l_{0}\), 将它吊在天花板上。当它下端挂一托盘平衡时, 其长度变为\(l_{1}\)。然后在托盘中放一重物, 弹簧长度变为\(l_{2}\), 则由\(l_{1}\)伸长至\(l_{2}\)的过程中, 弹性力所作的功为: A: \(-\int_{l_{1}}^{l_{2}}kx\)d\(x\); B: \(\int_{l_{1}}^{l_{2}}kx\)d\(x\); C: \(-\int_{l_{1}-l_{0}}^{l_{2}-l_{0}}kx\)d\(x\); D: \(\int_{l_{1}-l_{0}}^{l_{2}-l_{0}}kx\)d\(x\)。
- 有一劲度系数为\(k\)的轻弹簧,原长为\(l_{0}\),将它吊在天花板上。当它下端挂一托盘平衡时,其长度变为\(l_{1}\)。然后在托盘中放一重物,弹簧长度变为\(l_{2}\),则由\(l_{1}\)伸长至\(l_{2}\)的过程中,弹性力所作的功为: A: \(-\int_{l_{1}}^{l_{2}}kx\ dx\) B: \(\int_{l_{1}}^{l_{2}}kx\ dx\) C: \(-\int_{l_{1}-l_{0}}^{l_{2}-l_{0}}kx\ dx\) D: \(\int_{l_{1}-l_{0}}^{l_{2}-l_{0}}kx\ dx\)
- 有一原长为l0的轻弹簧吊在天花板上,其弹性力可表为F=-kx,式中k为劲度系数,x为弹簧的伸长量.当弹簧下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长度变为l2.则由l1伸长至l2的过程中,弹性力所做的功的积分表达式为 .
- 有一劲度系数为k的轻弹簧,原长为l0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长度变为l2,则由l1伸长至l2的过程中,弹性力所作的功为
- 有一劲度系数为k的轻弹簧,原长为l0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长度变为l2,则由l1伸长至l2的过程中,弹性力所作的功为( )