对于[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 变量回归模型, 可以证明方程(7. 5. 6) 中给出的第[tex=8.071x1.357]r2nR6ryBUUX/0Xj3eOQ34ZKwR56FGVHzXXJUgUuA1Rg=[/tex] 偏回归系数 [tex=1.0x1.571]5jW+MWk+PahntruWv+lHnoAwv3IBXEDCmIlnRGu01o8=[/tex]的方差可表示为 :[br][/br][tex=12.714x2.929]iLt6h0UcHTUkOOQSNyECJko2KGPEUz2I85tru3QQwdQM5wVpbijgYIdsq+Vq1QoSuBxiXUztjXGuu3fP4feVgOjThWOiZ64uAvmTthcuUIkKtJOnbcLT5MAJELlbIrd0RLNf3hIPL7MgkDJr46zoiQkDlUf9/g49hbhCJ0+DLCZ8p+9BMx3WrCwFaL2m9gnA[/tex][br][/br]其中[tex=2.357x1.643]27lskPSZdwsC1EHGc9xtStZDVpc+eYbtj46vLSKiawI=[/tex]的方差, [tex=1.786x1.5]XM2rvsvSruZn8qr6QWfJy2Q5DQcwpY9mvFOXSO13E8Q=[/tex] 第[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个解释变量的方差, [tex=3.143x1.5]EoOhnmDG3JM84l2buzOmPoBLyz70Blrhnuh4rhGdru8=[/tex] 对其余 $X$ 变量的回归中的判定系数, [tex=2.571x1.214]SF/HBhWfa4+Jt2ITGnU8eg==[/tex] 对全部 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]变量的回归中的判定系数。[br][/br]判断正误:“ [tex=1.0x1.571]5jW+MWk+PahntruWv+lHnoAwv3IBXEDCmIlnRGu01o8=[/tex]的方差随[tex=1.214x1.214]kOo7YUBfHY2eqRiq3FDUeA==[/tex]上升而下降, 因此由高的[tex=1.214x1.5]Kz47F2qFzmazwMMTAbTZYg==[/tex] 产生的影响可由高的[tex=1.214x1.214]kOo7YUBfHY2eqRiq3FDUeA==[/tex]来抵消。”
举一反三
- 对于[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 变量回归模型, 可以证明方程(7. 5. 6) 中给出的第[tex=8.071x1.357]r2nR6ryBUUX/0Xj3eOQ34ZKwR56FGVHzXXJUgUuA1Rg=[/tex] 偏回归系数 [tex=1.0x1.571]5jW+MWk+PahntruWv+lHnoAwv3IBXEDCmIlnRGu01o8=[/tex]的方差可表示为 :[br][/br][tex=12.714x2.929]iLt6h0UcHTUkOOQSNyECJko2KGPEUz2I85tru3QQwdQM5wVpbijgYIdsq+Vq1QoSuBxiXUztjXGuu3fP4feVgOjThWOiZ64uAvmTthcuUIkKtJOnbcLT5MAJELlbIrd0RLNf3hIPL7MgkDJr46zoiQkDlUf9/g49hbhCJ0+DLCZ8p+9BMx3WrCwFaL2m9gnA[/tex][br][/br]其中[tex=2.357x1.643]27lskPSZdwsC1EHGc9xtStZDVpc+eYbtj46vLSKiawI=[/tex]的方差, [tex=1.786x1.5]XM2rvsvSruZn8qr6QWfJy2Q5DQcwpY9mvFOXSO13E8Q=[/tex] 第[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个解释变量的方差, [tex=3.143x1.5]EoOhnmDG3JM84l2buzOmPoBLyz70Blrhnuh4rhGdru8=[/tex] 对其余 $X$ 变量的回归中的判定系数, [tex=2.571x1.214]SF/HBhWfa4+Jt2ITGnU8eg==[/tex] 对全部 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]变量的回归中的判定系数。[br][/br]如果共线性是完全的,上述公式会 出现什么情况?
- 对于[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 变量回归模型, 可以证明方程(7. 5. 6) 中给出的第[tex=8.071x1.357]r2nR6ryBUUX/0Xj3eOQ34ZKwR56FGVHzXXJUgUuA1Rg=[/tex] 偏回归系数 [tex=1.0x1.571]5jW+MWk+PahntruWv+lHnoAwv3IBXEDCmIlnRGu01o8=[/tex]的方差可表示为 :[br][/br][tex=12.714x2.929]iLt6h0UcHTUkOOQSNyECJko2KGPEUz2I85tru3QQwdQM5wVpbijgYIdsq+Vq1QoSuBxiXUztjXGuu3fP4feVgOjThWOiZ64uAvmTthcuUIkKtJOnbcLT5MAJELlbIrd0RLNf3hIPL7MgkDJr46zoiQkDlUf9/g49hbhCJ0+DLCZ8p+9BMx3WrCwFaL2m9gnA[/tex][br][/br]其中[tex=2.357x1.643]27lskPSZdwsC1EHGc9xtStZDVpc+eYbtj46vLSKiawI=[/tex]的方差, [tex=1.786x1.5]XM2rvsvSruZn8qr6QWfJy2Q5DQcwpY9mvFOXSO13E8Q=[/tex] 第[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个解释变量的方差, [tex=3.143x1.5]EoOhnmDG3JM84l2buzOmPoBLyz70Blrhnuh4rhGdru8=[/tex] 对其余 $X$ 变量的回归中的判定系数, [tex=2.571x1.214]SF/HBhWfa4+Jt2ITGnU8eg==[/tex] 对全部 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]变量的回归中的判定系数。[br][/br]其他情况不变, 如果[tex=1.0x1.0]gjPmOjG4xi1eTWq5rIOeeA==[/tex]增加, [tex=3.786x2.214]iLt6h0UcHTUkOOQSNyECJko2KGPEUz2I85tru3QQwdTwy56yvCQqmYxng46A4g6QI7kq6cTx1pJvHiNK2f1kbQ==[/tex] 会出现什么情况? 这时多重共线性问题有什么含义?
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 表3 3给出Y关于X,X的线性回归结果。[img=597x133]17b00b1eab2e326.png[/img] 根据以上信息,你能否确定[tex=1.214x1.214]AKRJ+piA0nf7C/6/dimpFw==[/tex]和[tex=1.214x1.214]mzDCcy67Z8VvjJDKwZ/vAA==[/tex]各自对Y的影响?