设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]只有两个间断点.则 未知类型:{'options': ['[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是连续型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]\xa0一定不是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定不是连续型随机变量'], 'type': 102}
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]只有两个间断点.则 未知类型:{'options': ['[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是连续型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]\xa0一定不是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定不是连续型随机变量'], 'type': 102}
设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为度量空间。证明:[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中收敛序列有唯一的极限。
设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为度量空间。证明:[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中收敛序列有唯一的极限。
已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数为[tex=8.5x2.143]Ca+H1VjqhIFFe3JC2XAU2rOuJUFZivOezxxgZEpNix4wWRHa7Q2XYP2aHPPIgOy/[/tex],试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的特征函数.
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数为[tex=8.5x2.143]Ca+H1VjqhIFFe3JC2XAU2rOuJUFZivOezxxgZEpNix4wWRHa7Q2XYP2aHPPIgOy/[/tex],试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的特征函数.
已知离散型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布列为: [tex=17.929x1.357]ikQ9bj0jXqEsK0iZGG38patjGiNNp2skUum208IHQDrgM02liZ3vl6bkit9icGZY[/tex] 试写出 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数。
已知离散型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布列为: [tex=17.929x1.357]ikQ9bj0jXqEsK0iZGG38patjGiNNp2skUum208IHQDrgM02liZ3vl6bkit9icGZY[/tex] 试写出 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数。
设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为距离空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中子集,令 [tex=10.643x1.357]5cM/LvJqoCikO7A5c+WCIGNRUqezDJxu3zpxuE11UPKaIvCUSRrZmDCbItUQwXHvm/mb7WPRr4/CaMIdGTZddg==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上连续函数.
设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为距离空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中子集,令 [tex=10.643x1.357]5cM/LvJqoCikO7A5c+WCIGNRUqezDJxu3zpxuE11UPKaIvCUSRrZmDCbItUQwXHvm/mb7WPRr4/CaMIdGTZddg==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上连续函数.
已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为可分 [tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间, 证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中任何规范正交系至多可数集.
设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为可分 [tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间, 证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中任何规范正交系至多可数集.
设连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=12.857x2.429]U8EmrNdvLYP7VnO9GCL0WKC9lw90KXXShABMLxBUPz+883V6ZlmOKYenQdRp5qeYe2K4EeF5ruQqhPOElrvMWA==[/tex],求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望与方差.
设连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=12.857x2.429]U8EmrNdvLYP7VnO9GCL0WKC9lw90KXXShABMLxBUPz+883V6ZlmOKYenQdRp5qeYe2K4EeF5ruQqhPOElrvMWA==[/tex],求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望与方差.