(sin2x)'=( ), (sin(3x+1))'=( ), (cos4x)'=( ), (cos(5x-3))'=( )
举一反三
- 求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- 【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
- 常微分方程[img=243x26]1802e4d57c1aad8.png[/img]的解为: A: exp(-x)*sin(3^(1/2)*x)*C2+exp(-x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数 B: exp(-2x)*cos(3^(1/2)*x)*C2+exp(-2x)*cos(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 C: exp(-3x)*sin(3^(1/2)*x)*C2+exp(-3x)*sin(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 D: exp(-4x)*sin(3^(1/2)*x)*C2-exp(-4x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数
- 已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)