3维正方体有8个顶点,12条棱,6个面.若棱长为a,它的体积[tex=2.929x1.429]lvLbO+dQKnChgEkVM0tdaQ==[/tex],面积[tex=3.5x1.429]VInkLAAfbnR8TgpNmtToIw==[/tex]为了一.致,可将2维空间的正方形规范地称作2维空间的正方“体”,原正方形的边成为这个正方“体”的“面”,“面”与棱重合.2维.空间正方“体”有4个顶点,4条棱,4个“面”.若棱长为a,它的“体积[tex=2.929x1.429]EjNXqC1URGjz4BBmLyGbhw==[/tex]"面积[tex=3.071x1.214]eJQDaPaqcljJKHxXKcUrXA==[/tex]同样,1维空间的- -条线段可称作1维空间的正方“体”,则“体”与梭重合,原线段的顶点成为这个正方“体”的“面”,即“面”与顶点重合.1维空间正方“体”有2个顶点,1条棱,2个“面”.若棱长为a,它的“体积[tex=3.0x1.429]gnvAfGgYld3BZyCk9VETmw==[/tex]面积[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]对k维空间正方体,用递归方法求出它的顶点数、棱数和面数;若棱长为a,求它的体积[tex=1.0x1.214]PQtKs/Jji+Up7UH1owU3MQ==[/tex]和面积[tex=1.0x1.214]NI+R27zscgTK7aPLKyu1OA==[/tex]
举一反三
- 3维正方体有8个顶点,12条棱,6个面.若棱长为a,它的体积[tex=2.929x1.429]lvLbO+dQKnChgEkVM0tdaQ==[/tex],面积[tex=3.5x1.429]VInkLAAfbnR8TgpNmtToIw==[/tex]为了一.致,可将2维空间的正方形规范地称作2维空间的正方“体”,原正方形的边成为这个正方“体”的“面”,“面”与棱重合.2维.空间正方“体”有4个顶点,4条棱,4个“面”.若棱长为a,它的“体积[tex=2.929x1.429]EjNXqC1URGjz4BBmLyGbhw==[/tex]"面积[tex=3.071x1.214]eJQDaPaqcljJKHxXKcUrXA==[/tex]同样,1维空间的- -条线段可称作1维空间的正方“体”,则“体”与梭重合,原线段的顶点成为这个正方“体”的“面”,即“面”与顶点重合.1维空间正方“体”有2个顶点,1条棱,2个“面”.若棱长为a,它的“体积[tex=3.0x1.429]gnvAfGgYld3BZyCk9VETmw==[/tex]面积[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]从度量的角度分析,为什么数学上给出[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]?
- 已知空间三角形的顶点坐标为[tex=1.0x1.214]2Fe5dbSLid0C+D68Q8kHHg==[/tex](0,1,-2),[tex=1.0x1.214]eVKG/l6KyRj55Qp3xeOQRQ==[/tex](4, 1,-3)及[tex=1.0x1.214]iXfyWRMUgBc9cgx58BoZAA==[/tex](6, 2, 5)。试问:①该三角形是否是直角三角形;②该三角形的面积是多少?
- 从供选择的答案中选出填入叙述中的方框内的正确答案计算非同构的根树的个数(1) 2 个顶点非同构的根树有 [tex=2.143x2.429]rVbjoKgaBYChmT2nPEBA4Q==[/tex] 个(2) 3 个顶点非同构的根树有 [tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex] 个(3) 4 个顶点非同构的根树有 [tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex] 个(4) 5 个顶点非同构的根树有 [tex=2.214x2.429]ZPUE0nZuXRHoore7NT++rQ==[/tex] 个供选择的答案[tex=6.071x1.286]GZbiT2P8T8KVyVUEWQpYyjIiVTkGekbnZrmhPI/Gp54=[/tex]:① 1; ② 2; ③ 3; ④ 4; ⑤ 5; ⑥ 6; ⑦ 7; ⑧ 8; ⑨ 9; ⑩ 10
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 一正方体的棱长[tex=3.714x1.286]GMwDqWD2ATYV8aEUWpe8pw==[/tex],如果棱长增加[tex=2.143x1.286]L25eHmHr7obue5wpnZVPMA==[/tex],求此正方体体积增加的精确值和近似值.