• 2022-06-17
    设$f(x)$是一个二阶可导的函数,$f(1)=2$。设$y=\varphi(x)$是$x=f(y)$的反函数,则曲线$y=\varphi(x)$在$(2,1)$处的曲率和曲线$y=f(x)$在$(1,2)$处的曲率相同。
  • 正确

    内容

    • 0

      若函数y=f(x)的导数y′=f′(x)仍是x的函数,就把y′=f′(x)的导数y″=f″(x)叫做函数y=f(x)二阶导数,记做y(2)=f(2)(x).同样函数y=f(x)的n-1阶导数的导数叫做y=f(x)的n阶导数,表示y(n)=f(n)(x).在求y=ln(x+1)的n阶导数时,已求得y′=1x+1,y(2)=-1(x+1)2,y(3)=1•2(x+1)3,y(4)=-1•2•3(x+1)4,…,根据以上推理,函数y=ln(x+1)的第n阶导数为___.

    • 1

      已知函数f(x)可导,且(5)=2,设y=f(2x2+3x),则|x=1=[  ]

    • 2

      feff设二元函数z=f(x,y),则二元函数z=f(x,y)在(x,y)处的偏导数连续是z=f(x,y)在(x,y)处可微的

    • 3

      设函数$f(x,y)={{x}^{2}}(2+{{y}^{2}})+yln y$,则$f(x,y)$的</p></p>

    • 4

      【判断题】设曲线 y=f(x) 在点 P(a,f(a)) 处的切线方程为 y=kx+b, 则函数 y=f(x) 在 x=a 处可微, 且 dy=kdx.