(本小题满分16分)设数列{an}满足:a1=1,a2=2,an+2=(n≥1,n∈N*).
举一反三
- 已知数列{an}满足,a1=1,a2=2,an+2=an+an+12,n∈N×.
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 数列{an}中a1=1,a2=2,an+2=2an+1+an,则a5=______.
- 已知数列{an}满足a1=1,a2=3,an+1an-1=an(n≥2),则数列{an}的前40项和S40等于( )
- 已知数列{ a n }, a 1 =1, a n - a n - 1 =1 ( n ≥2).则 a 5 =( )