举一反三
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 一坝基平面有压渗流, 土的渗透系数为[tex=8.071x1.5]+Ky8H5LHaX438iO5rBpjnr3ywEcBIGl8D4x7FkAP6Ks=[/tex], 坝的上游水 头 [tex=4.143x1.214]XIcZ8MpLEy6OY99IGRjAXw==[/tex] 下游水头[tex=4.143x1.214]otCzjSFVtiNDjjUYv+ayTg==[/tex]。已绘制好流网,共有等势线 13 条,流线 12 条, 现将基准面取在下游水面上,若流网图的比尺为 1:200,试计算:(1)图中某正方形网格的边长[tex=7.214x1.214]gt/YQqlZxhe5irFAcGZpzYiGIPyC8Vh4IAVW+NB9RAE=[/tex]求出该网格水流的平均水力坡 度[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 和渗流速度[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]。(2) 求出垂直于坝轴线单位宽度上的渗流量 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]。(3) 求最后一条等势线上某点的渗流压强 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 。
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
内容
- 0
若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 1
采用基2频率抽取FFT算法计算点序列的DFT,以下()流图是对的。 A: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] B: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] C: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7] D: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7]
- 2
已知[tex=10.786x1.357]oPxEQGciaJq0uWonaJqXssvTKx2aAMqoshLd51U2O4M=[/tex],若[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]相互独立,则[tex=3.0x1.357]cl60lRnHnAb2Fyha9FYNvw==[/tex] A: 1/2 B: 1/3 C: 2/3 D: 3/4
- 3
考虑二元函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]的下面 4 条性质:(1) 函数[tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点[tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处连续 ;(2) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点 [tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处两个偏导数连续 ;(3) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点[tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处可微(4) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex] 在点 [tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处两个偏导数存在.则下面结论正确的是 未知类型:{'options': ['[tex=7.0x1.357]LI/A6g83qMWkspQoIAxg235oMvxzT+olJO0vBJtaNVR6AeEc+bTbt8K1FaN91+ii[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3znrPQd2cQyONz0sQpidnkm5CLqdI1zJf0rQvDLR4w8ya[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3zsRXAYoUByh3gckcm3YOTCoRoRyvvTWqy8GXrRUSDL3H[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3zib0s5Zt3aK71zIoZbNqO3oywpSFgiM5nrGM6ykqZb3e[/tex]'], 'type': 102}
- 4
一列沿x轴负方向传播的平面简谐波,在[tex=3.714x1.357]4F3j291HV6DLzYXfMOu1eA==[/tex]时的波形如图7.4所示,周期T=2s.试求:(1)[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处(即0点处)质点的振动表达式;(2)此波的波动表达式:(3) P点离0点的距离;(4) P点的振动表达式,[img=435x303]17e62827001c3f0.png[/img]