中国大学MOOC: 假设卷积神经网络某隐层的特征图大小是17*17*8,其中8是通道数,使用大小为3*3的12个卷积核,步长为2,没有padding对此隐层进行操作,得到的特征图大小是?
举一反三
- 假设卷积神经网络某隐层的特征图大小是19*19*8,其中8是通道数,使用大小为3*3的12个卷积核,步长为2,没有padding对此隐层进行操作,得到的特征图大小是? A: 8*8*12 B: 8*8*8 C: 9*9*12 D: 14*14*8
- 假设某卷积层的输入特征图大小为36*32*6,卷积核大小是5*3,通道为20个,步长为1,没有padding,那么得到的特征图大小为? A: 32*30*20 B: 27*30*20 C: 32*28*6 D: 36*34*20
- 假设某卷积层的输入和输出特征图大小分别为63*63*6和31*31*12,卷积核大小是5*5,步长为2,那么Padding值为多少? A: 1 B: 2 C: 3 D: 4
- 假设某卷积层的输入和输出特征图大小分别为63*63*16和31*31*64,卷积核大小是5*5,步长为2,那么Padding值为多少? A: 1 B: 2 C: 3 D: 4
- 现有一个两层的卷积神经网络,第一层是常规的卷积层,输入输出的通道数为3和64,卷积核大小为3×3;第二层是分组卷积层(group convolution layer),分为4组,输入输出通道数为64和32,卷积核大小为3×3。则该网络的参数个数为()