• 2022-06-16
     若[tex=5.429x1.357]ZjMdT7m98jm39QBRyKdYOg==[/tex]( 矩形序列 )求[tex=4.714x1.357]F/hAjBjkWM7oKDhEPHBvB0KQzoADGG/9/gBejLIN1EE=[/tex]
  • [tex=14.786x3.0]F/hAjBjkWM7oKDhEPHBvBwlvoiF4kqnO42VNVDbKO8ihyMkzSKdLvZHReqmlGu2LURH2sARM7bC92R0JNp7eDChRcUzAkELokSMo+qmvvqc=[/tex]

    内容

    • 0

      [tex=5.429x1.357]qEtZRxWoSPOcEVaJgqloeQ==[/tex] 求[tex=2.143x1.429]Kh72UrSNRrBAoiVLHc4WRQ==[/tex]

    • 1

      若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是可导的函数,求 [tex=5.429x1.357]cJomUInuhoC9Stv+E9sNSjlP6+45perPz4EvtPDE1TE=[/tex] 的导数

    • 2

      若x为自变量t,求[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex],设:[tex=2.571x1.214]Sv9aCsCkfQ4wl+tpfaNV0Q==[/tex]

    • 3

      求点[tex=3.857x1.357]XEESMK9kUFAy+lI80SxG9A==[/tex]到点 [tex=4.714x1.357]o0LP0Y0w+YOonajd0r7IBQ==[/tex], [tex=4.714x1.357]AjQpUiUOILDUhThE0YfVFw==[/tex], [tex=3.929x1.357]0bmVHX1vP6qWSF6m4QG/BQ==[/tex] 所在平面的距离.

    • 4

      若x为自变量t,求[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex],设:[tex=3.286x2.429]Z7quRs/e7a1u866Z5LdsV0IqhzCCf4wq0xg1PYt4Hyg=[/tex]