• 2022-06-16
    设[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]可导,且其导函数[tex=5.0x1.429]c/fRLveTI7u8xkZcJ/PHmSHwtk2sLojLlUWWTOUXHVo=[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上可积,证明[tex=10.071x2.857]NY7oodrirBbiImTnksGISR1JctoX9zmWuZLcV2xOGXlcgu2bAmY7Bt12r87L2oxF[/tex].
  • 证:[tex=23.071x2.929]Tw9XFbdlendvTSgSViJ0+Jk7s4hoVuT9ziwEz/XzrN6mtbpoakVSSfv+ZSZR/Jyr5G1PnWZu59vIFC7C4NJNfR8iz61gcO8tTTI1tKAIW03Xbje5xNUeByOLaz5uyVJI4KZP7BPYscnnyEIeFDu34htchS8Ahn0K9o+R3YxCdppPgeNGRz6CfwXQX4IRUs6RO3IHxJphxywReadPuQ6MRw==[/tex],[tex=18.0x3.714]AoNyWg9kh+1NTrJ36sPgAse9zOLbom7jaM68hTJMcPXa1Hn54pArFA56+GarY/vGEJ3gUUK/DpMkFkSSrrQzN6BnLPywwl+7lilHZSXnQxfggHevJS7KU1iDHCgY5s3g6KSgW2QeeRm6F1Oo7PQRImVsCBtKdGb9aDK2wNEVPcnZHjr+4f4eol8YBRJhhfKn[/tex].[tex=1.857x1.357]9oKZycI9yj5WTkn8OdhAyzLyYxq4PiJ6a1Ex8ZA2nqU=[/tex]为[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]的分割.

    举一反三

    内容

    • 0

      下列条件不能使函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上应用拉格朗日中值定理的是 未知类型:{'options': ['[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且在点a处右连续,点b处左连续', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有连续的导数'], 'type': 102}

    • 1

      证明:当[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上处处存在且有界时,[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]是在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上绝对连续的.

    • 2

      设函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,且[tex=6.429x2.857]NY7oodrirBbiImTnksGISSG8YSRY9truN1qiLE5yW/RMTsYeSUkl61Ig2UdyTeBn[/tex],证明:[tex=7.357x1.357]QsoQGG2UOs3shx6vx5E/WtT5gABs4MOxhRSIS+wp+aOxQp56f+x94WXtkdzlliBC[/tex].

    • 3

      若在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]可导,且[tex=4.071x1.429]U93ae75fuTDIyESpUsh0ZmAMIxCaRnAEUmXXp9cwR8g=[/tex],且[tex=5.643x1.357]w5iiPSI0WY83EY7RJGqdTSmY/K+P48ZZ5M17QwJn8Zo=[/tex],证明:方程[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有唯一实根

    • 4

      设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=2.0x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上可积,且在[tex=2.0x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上满足[tex=6.929x1.357]LiQ9C+m7FqKoJlELJUR9Wpc6P4X33d2/15OwIdR1Fbc=[/tex].证明[tex=0.786x2.571]Sgd8zVaGmGkxzc0ggAecXQ==[/tex]在[tex=2.0x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上也可积。