若f′(cos2x)=sinx,则f(x)等于:()
A: (1/3)(1-x)+c
B: (2/3)(1-x)+c
C: -(1/3)(1-x)+c
D: (1-x)+c
A: (1/3)(1-x)+c
B: (2/3)(1-x)+c
C: -(1/3)(1-x)+c
D: (1-x)+c
举一反三
- 若f′(cos[sup]2[/]x)=sinx,则f(x)等于:() A: (1/3)(1-x)<sup>3</sup>+c B: (2/3)(1-x)<sup>3</sup>+c C: -(1/3)(1-x)<sup>3</sup>+c D: (1-x)<sup>3</sup>+c
- 17e0b849b7d64bd.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]实验命令为(). A: syms x;f=diff(asinsqrt(x))f=1/2/x^(1/2)/(1-x)^(1/2) B: f=diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2)
- 17da42840675a6d.jpg,计算[img=19x34]17da4275482315f.jpg[/img]实验命令为(). A: syms x;f=diff(asinsqrt(x))f=1/2/x^(1/2)/(1-x)^(1/2) B: f=diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2)
- 已知f(1-x^1/2)=x则f(x)=
- f(x)满足f(x/1)=x/(1-x^2),则f(x)=?