讨论函数 [tex=7.429x1.571]AF9UmKsCp2jHFrKBGENVleLMANfy4x87DIERABeMRsZTeRUq0LvYJN3w15cmtYtM[/tex] 的单调性.
举一反三
- 假设原始问题为: max z=2x 1 -x 2 +3x 3 -2x 4 s.t. x 1 +3x 2 - 2x 3 + x 4 ≤12 -2x 1 + x 2 -3x 4 ≥8 3x 1 - 4x 2 +5x 3 - x 4 = 15 x 1 ≥0, x 2 :Free, x 3 ≤0, x 4 ≥0 则对偶问题中约束条件及决策变量的符号依次为: min y=12w 1 +8w 2 +15w 3 s.t. w 1 - 2w 2 + 3w 3 ( ) 2 3w 1 + w 2 - 4w 3 ( ) -1 -2w 1 +5w 3 ≤3 w 1 - 3w 2 - w 3 ≥-2 w 1 () 0,w 2 () 0, w 3 :Free
- 以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
- 下列函数在(-∞,+∞)内是单调增加的函数是()。 A: Af(x)=x<sup>2</sup> B: Bf(x)=x<sup>4</sup> C: Cf(x)=x<sup>3</sup> D: Df(x)=e<sup>x</sup>-x
- 假设x=4,y=2,m=5,n=4,w=12,t=9,则经过表达式(w=x 0 9
- 函数的定义域是( ) A: {(x,|2<x2+y2<3} B: {(x,|4<x2+y2<9} C: {(x,|4<x2+y2≤9} D: {(x,|22+y2≤3}