求下列系统的零输入响应 [tex=2.286x1.357]Q9uGIQvru+tRYnSpePeBvw==[/tex], 已知激励 f(n) 在 n =0 时接入。 [tex=24.357x1.357]n5UTvGlYvQI9eWmU17kqtZtOyNJmKA0nDEBJaeTBDXNsBu+Sqr6FfUJyr0x/xMIdv7R8b2kNEw7hxhJZ8+W4HQ==[/tex][br][/br]
特征方程为[tex=7.0x1.357]faNzzW45tAUGUl3QmMT7DifLCNbD+UJsYOtiafotPjg=[/tex], 特征根[tex=6.429x1.214]Mi4RogFSNEUtejDKNN7cIqb4Thq9FbnMTc1iSJ8J6u6Kp1D6gFtY0jRcgWxdKtrm[/tex], 所以[tex=16.286x2.786]PSUbeLA4krrGLssDJucZ/BMJ13M7CKH0K6CPlFDoUMR22hrbMOLADMyPTVhX+WO/187kWU6WDKBSpdOpSPfwZKwmAPQ8bgzcWyGz1L/4+BBmyKwAfvpGRLUSek1r/cB8[/tex], 代入初始条件,得[tex=12.0x3.357]7EJHVCtO2IWq3KpdB+jQssHMqIjOR3GibVkzqTBp91Kjx4OLD71g/a65zCQg3CyiWrYLLF/futQoby0cDpDLmzFmyMwEAhxSPP1zsvfumYfEbaVb/2I0tfie7EbjgK6HcklbD2NMUJqgZFXo6lqRog==[/tex], 解得: [tex=5.429x5.214]7EJHVCtO2IWq3KpdB+jQsoICbzqzObrhVNuXTHhuRjaQltiYC1K1DjGIROwM4Br+q6ZX2IhkqXmwF39h3wusBdUBuHWMT6r+cjeQ7gmEwahx2syxYqPHrDEgBIL0ll1v[/tex]因此 [tex=14.571x2.357]MlqegOXCB3kHjxJWcBD1q6ySBsFcIU9IovjREB8TcJGsAQKp5KFwf6na9ojaPCIUu8yScHQTQWPHV2tO1wkKjL/NhuV0moj0cd83xAzPsZI=[/tex]
举一反三
- 若要将一个长度为N=16的序列x(n)重新位倒序,作为某一FFT算法的输入,则位倒序后序列的样本序号为( )。 A: x(15), x(14), x(13), x(12), x(11), x(10), x(9), x(8), x(7), x(6),<br/>x(5), x(4), x(3), x(2), x(1), x(0) B: x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7), x(8), x(12), x(10),<br/>x(14), x(9), x(13), x(11), x(15) C: x(0), x(2), x(4), x(6), x(8), x(10), x(12), x(14), x(1), x(3), x(5),<br/>x(7), x(9), x(11), x(13), x(15) D: x(0), x(8), x(4), x(12), x(2), x(10), x(6), x(14), x(1), x(9), x(5),<br/>x(13), x(3), x(11), x(7), x(15)
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 计算下列序列的N点DFT。(1)x(n)=1(2)x(n)=δ(n)(3)x(n)=δ(n一n0),0<n0<N(4)x(n)=Rm(n),0<m<N(7)x(n)=ejω0nRN(n)(8)x(n)=sin(ω0n)RN(n)(9)x(n)=cos(ω0n)RN(n)(10)x(n)=nRN(n)
- 说明S盒变换的原理,并计算当输入为110101时的S1盒输出。 [br][/br] n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S1 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
内容
- 0
假设x=4,y=2,m=5,n=4,w=12,t=9,则经过表达式(w=x 0 9
- 1
【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 2
已知S盒如下表,若输入为100010,则二进制输出为( ) [br][/br] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 A: 0110 B: 1001 C: 0100 D: 0101
- 3
假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9
- 4
设X~B(n,P),且E(X)=4,D(X)=2,则n=( ). A: 7 B: 8 C: 9 D: 10