函数\(z = {\left( {xy} \right)^x}\)的全微分为
A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\)
B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\)
B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
举一反三
- 设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)
- 设\(z = z\left( {x,y} \right)\)是由方程\({z^3}{\rm{ + }}3xyz - 3\sin xy = 1\)确定的隐函数,则\( { { \partial z} \over {\partial y}}=\)( ) A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\) C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)
- 设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)
- 函数$y = \ln x$,则${\left( {\ln x} \right)^{\left( n \right)}} = {\left( { - 1} \right)^{n - 1}}{{\left( {n - 1} \right)!} \over {{x^n}}}$。( )
- \( \int {({1 \over x} - {2 \over {\sqrt {1 - {x^2}} }})dx} = \)( ) A: \( \ln \left| x \right| + 2\arcsin x + C \) B: \( \ln \left| x \right| - 2\arcsin x + C \) C: \(- \ln \left| x \right| - 2\arcsin x + C \) D: \(- \ln \left| x \right| +2\arcsin x + C \)