x2+y2+z2-xy-yz-xz=75。()(1)x-y=5;(2)z-y=10.
举一反三
- x2+y2+z2-xy-yz-xz=75。()(1)x-y=5;(2)z-y=10.
- 判断下列关系模式可以达到的范式级别:1)R(X,Y,Z)F={XY→Z}2)R(X,Y,Z)F={Y→Z,XZ→Y}3)R(X,Y,Z)F={Y→Z,Y→X,X→YZ}4)R(X,Y,Z)F={X→Y,X→Z}
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 假设x、y、z为整型变量,且x=2,y=3,z=10,则下列表达式中值为1的是 A: x y || z B: xz C: (!x y) || (yz) D: x !z || !(y z)
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$