一根用[tex=1.571x1.0]yZS5Ixr9AtR4Sh0PR6roNg==[/tex]工字钢([tex=2.357x1.214]e0t0a5j+antnI7YmmjeYRQ==[/tex]) 制成的立柱,上端自由,下端固定,柱长[tex=2.429x1.0]kixuz/jpvs1OmUv8KegltkH+5v7jnLEVELTSPtXXqkI=[/tex], 轴向压力[tex=4.214x1.0]QgLbTinFWRFz3gRtkX6vRdzM6t9UzqdpzDBI2jvtRl0=[/tex], 材料的许用应力[tex=5.5x1.357]5YRtK1ZUIkay1m/gmINeEVLbhtYpqiaKAD5lBxQdwVw=[/tex], 试校核立柱的稳定性。
举一反三
- 如图 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 所示由横梁 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 与立柱 [tex=1.571x1.0]iW5Ht7EzAojfQ+hbsC5yyQ==[/tex] 组成的结构。载荷 [tex=4.286x1.0]ma+yrvXVEUlxmWSniMiadMU81HZ7lX9M/ttNFnSZAO4=[/tex], [tex=3.929x1.0]7KEok2LBVs1L8HN2v3oHXUwgRb8ACygElTPbgA2C+Js=[/tex], 立柱的直径 [tex=3.643x1.0]+HxX1812+UKqKi7vNAqTUV54+RmwqCo7vpMQDgaaLm4=[/tex], 两端铰支,材料是 [tex=2.357x1.214]e0t0a5j+antnI7YmmjeYRQ==[/tex],弹性模量 [tex=5.0x1.0]I39xaBJkFLpt9W9FKLvFNHmGUSeh1NgbGmFZloCYg5Q=[/tex], 规定稳定安全因数 [tex=3.714x1.357]xB8E7JBv7WFTgmfohcZbt44Dw/trsSDnZWhF6VOz3Oo=[/tex]。 [tex=1.286x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex] 试校核立柱的稳定性; [tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex]如已知许用应力 [tex=7.357x1.5]+OFuVeTFCx5GmuVtVD1SGAtgu9oBrc3MtUVndfTNiyXNP7Ux0gQEJhAkOpXdh1fX[/tex], 试选择横梁 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 的工字钢号码。
- [img=267x359]179ad2df1ad3fe3.png[/img]题图所示立柱,由两根[tex=2.857x1.0]yW3PyewJlbWxBwMj3fuznw==[/tex]槽钢煌接而成,在其中点横截面[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]处,有一直径为[tex=4.071x1.0]28hO0oC5+dAmr6vzlLMaQA==[/tex] 的圆孔,立柱用[tex=2.357x1.214]BNHYDkHkHtwNs9qbX22PIQ==[/tex]钢 制成,许用应力[tex=5.571x1.357]yEPwQL2mhZHwdz0OcEX+QFOfUynDXjPAmwIHUOw3mYU=[/tex]。试校核立柱的稳定性与强度。
- 如图 10-24 所示, 已知某立柱由四根 [tex=5.0x1.143]RX2V3+ha43WI/TMqyurAwwEw3PRvzjzjhtWtx751aZA=[/tex]的角钢构成, 柱长[tex=2.429x1.0]ju1T9DkduUJws6cUC+Oeo0hGwnv35IJxRG8sBfwv6GQ=[/tex], 立 柱两端为球形铰支, 材料为[tex=2.357x1.214]e0t0a5j+antnI7YmmjeYRQ==[/tex] 钢, 规定的稳定安全因数 [tex=3.214x1.214]tU5M2KMTQhRUHgRqSyHFYYm8Ph75XKLwBb/w6haYl90=[/tex]。当立柱所受轴向压力[tex=3.714x1.0]uyh6IbMPoxg3d6zAL7PbViZXPBm7Jfzps/lOkMceAbs=[/tex]时,试校核其稳定性。[img=288x284]17d0a618d67c0dd.png[/img]
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}