几个级数求和问题1.n(n+1)/2^n(n从1到正无穷)2.2^n/3^n(2n-1)(n从1到正无穷)
举一反三
- n^2*(x^1/n-x^1/n+1)n趋近于正无穷,x大于0求极限
- (1+1/2+……+1/n)/n在n为正无穷的极限为()。 A: 1 B: 0 C: 1/2 D: 1/e
- 极限问题1.lim(n^1/3.sinn^3)/(n+1)n趋于无穷2.(tanx)^sinxx趋于0正
- 数列{xn}=((-1)(n-1)+n)/n在n为正无穷的极限为1
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]