• 2022-06-18
    旋轮线$x=a(t-\sin t),y=a(1-\cos t)$的一拱($0 \le t \le 2 \pi$)的绕$x$轴旋转得到的立体的体积为
    A: $\pi a^3$
    B: $\frac{32}{105} \pi a^3$
    C: $\pi a^2$
    D: $\frac{32}{105} \pi a^2$
  • B

    内容

    • 0

      由 \(y= { { x}^{3}},x=2,y=0\)所围成的图形绕 \(x \)轴旋转所得旋转体的体积为=( )。 A: \(\frac{16}{7}\pi \) B: \(\frac{32}{7}\pi \) C: \(\frac{64}{7}\pi \) D: \(\frac{128}{7}\pi \)

    • 1

      函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)

    • 2

      一平面简谐波以速度\(u\)沿\(x\)轴正方向传播,在\(t=t'\)时波形曲线如图所示.则坐标原点\(O\)的振动方程为 A: \(y=a\)cos[\(\frac{u}{b}\)\((t-t')\)\(+\frac{\pi}{2}\)] B: \(y=a\)cos[2\(\pi\)\(\frac{u}{b}\)\((t-t')\)\(-\frac{\pi}{2}\)] C: \(y=a\)cos[\(\pi\)\(\frac{u}{b}\)\((t+t')\)\(+\frac{\pi}{2}\)] D: \(y=a\)cos[\(\pi\)\(\frac{u}{b}\)\((t-t')\)\(-\frac{\pi}{2}\)]

    • 3

      由曲线 \(y= { { x}^{2}},x= { { y}^{2}}\)所围成的图形绕 \(y\)轴旋转所得旋转体的体积为=( )。 A: \(\frac{3}{5}\pi \) B: \(\frac{3}{8}\pi \) C: \(\frac{3}{10}\pi \) D: \(\frac{3}{20}\pi \)

    • 4

      8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$