举一反三
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 设非零的实系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=5.857x1.571]xuo/caF7g1JxzO9tAsH5V+Z5aGTPk3h4SrnQbNH+GYU=[/tex],求多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]。
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
- 给定正整数 [tex=2.643x1.214]XwLeJpDGjv0b7hGZyXvc2g==[/tex]求非零的实系数多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 满足条件[tex=6.786x1.571]LB2yNApLhZyKP315R87/DX5Ns/4mptxR8dhTRairfTOAdBnnYU0PvbEbHs37H7Il[/tex]
- 证明:次数>0且首项系数为1的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式的方幂的充要条件为:对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有[tex=6.214x1.357]SCBkc5H4H7gXsFShGuBkXHGQ7amFMmuOXsrvhaPqenQ=[/tex],或者对某一正整数[tex=5.786x1.357]jL4G1wTMOudnUvgQ3CGU1iBEGFBNZSU4aIci2NH+pS8=[/tex]
内容
- 0
证明:实系数多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]可表为两个实系数多项式的平方和的充分必要条件是对任何的实数 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 都有[tex=3.929x1.357]dxpzZeugwcyGH7ilNz1FuA==[/tex]
- 1
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是复数域上的多项式, 若对任意的实数 [tex=2.643x1.357]iBJ26CUHVdKHcNejg97vnw==[/tex] 总是实数, 求 证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是实系数多项式.
- 2
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是实系数[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次多项式,其中[tex=2.5x1.143]K+Swr2cA+8b62T1YU7nuOw==[/tex]。证明:如果[tex=3.429x1.357]5W4xTQrlz2YsNIZZqereQA==[/tex],那么[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]无重根且有偶数对虚根;如果[tex=3.929x1.357]vxzECGGRprE9ImOPQXowww==[/tex],那么[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]无重根且有奇数对虚根。
- 3
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]和[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是数域[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]上两上一元多项式[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]为给定的正整数,求证:[tex=4.5x1.357]ShTuQDB0guSKuvZOgm7LB0dGW2npF11Qsz8N+RlM50c=[/tex]的充要条件是[tex=5.5x1.5]LCGuFyBtoLSMLQDde42e4ThLaqXlbzBEgN6R284jA1M=[/tex]
- 4
设[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]是一个域,证明:在[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中,一个次数大于0的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]如果满足[tex=6.714x1.429]KDyX0boGZOlM+etbZfPoiiQiLF0IBxqLIx1hRl0QePRkiq019M1EkAUH7K5K2Mxp[/tex],那么[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]没有重因式。