设 [img=12x16]17d60b2db603794.png[/img]是锥面 [img=75x19]17d60b2dc21c4c4.png[/img] 被柱面[img=79x20]17d60b2dceaa0b5.png[/img]所割下的有限部分,则[img=166x34]17d60b2ddc328de.png[/img]
A: 65/15√2R4
B: 66/15√2R4
C: 64/15√2R4
D: 61/15√2R4
A: 65/15√2R4
B: 66/15√2R4
C: 64/15√2R4
D: 61/15√2R4
举一反三
- 求不定积分[img=132x48]17da6537fc8dad6.png[/img]; ( ) A: -(4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) B: (4*(sin(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) C: (4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) D: (4*(cos(x/2)/2 + 2*cos(x/2)))/(17*exp(2*x))
- 求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
- 设[img=101x68]17da617d02ef0f0.png[/img],当t =( )时,R(A) = 2。 A: -2 B: 2 C: 4 D: -4
- 圆[img=175x26]180357201617526.png[/img]的圆心和半径分别为 A: (4,-6),r=16 B: (2,-3),r=4 C: (-2,3),r=4 D: (2,-3),r=16
- 已知三次函数f(x)=(1/3)[img=18x22]1802e2b148262dd.png[/img]-(4m-1)[img=18x22]1802e2b1512ca3b.png[/img]+(15[img=23x22]1802e2b159732bb.png[/img]-2m-7)x+2在x∈(-∞,+∞)是增函数,则m的取值范围是(). A: m<2或m>4 B: -4<m<-2 C: 2<m<4 D: m>4