• 2022-06-19
    (1)是否存在正整数m,n,使得m(m+2)=n(n+1)?
  • (1)答案是否定的.若存在正整数m,n,使得m(m+2)=n(n+1),则(m+1)2=n2+n+1,显然n>1,于是n2<n2+n+1<(n+1)2,所以,n2+n+1不是平方数,矛盾.(5分)(2)当k=3时,若存在正整数m,n,满足m(m+3)=n(n+1),则4m2+12m=4n2+4n,(2m+3)2=(2n+1)2+8,(2m+3-2n-1)(2m+3+2n+1)=8,(m-n+1)(m+n+2)=2,而m+n+2>2,故上式不可能成立.(10分)当k≥4时,若k=2t(t是不小于2的整数)为偶数,取m=t2-t,n=t2-1则m(m+k)=(t2-t)(t2+t)=t4-t2,n(n+1)=(t2-1)t2=t4-t2,因此这样的(m,n)满足条件.若k=2t+1(t是不小于2的整数)为奇数,取m=t2-t2,n=t2+t-22则m(m+k)=t2-t2(t2-t2+2t+1)=14(t4+2t3-t2-2t),n(n+1)=t2+t-22 • t2+t2=14(t4+2t3-t2-2t),因此这样的(m,n)满足条件.综上所述,当k=3时,答案是否定的;当k≥4时,答案是肯定的.(15分)

    内容

    • 0

      下列量子数合理的是? n = 1,l = 0,m = 0|n = l,l = 1,m = 1|;n = 2,l = 0,m = 1 ‍|n = 2,l = 2,m = 2

    • 1

      在下列六组量子数中,正确的是‏① n=3,l= 1,m=-1 ② n = 3,l= 0,m = 0‏ ③ n = 2,l= 2 ,m=-1 ④ n = 2, l = 1 ,m = 0‏‍ ⑤ n = 2,l = 0,m =-1 ⑥ n= 2,l = 3 , m= 2 ‏ A: ①、③、⑤ B: ②、④、⑥ C: ①、②、③ D: ①、②、④

    • 2

      中国大学MOOC: 在下列六组量子数中,正确的是① n=3,l= 1,m=-1 ② n = 3,l= 0,m = 0 ③ n = 2,l= 2 ,m=-1 ④ n = 2, l = 1 ,m = 0 ⑤ n = 2,l = 0,m =-1 ⑥ n= 2,l = 3 , m= 2

    • 3

      下列各组量子数中正确的是 A: n = 3,l = 1,m = -1 B: n = 2,l = 2,m = 0 C: n = 2,l = 0,m = -1 D: n = 2,l = 3,m = 0 E: n = 1,l = 2,m = 1 F: n = 4,l = 0,m =1

    • 4

      下列各组量子数哪些是不合理的,为什么? (1) n=2,l=1,m=0; (2) n=2,l=2,m=-1; (3) n=3,l=0,m=0; (4) n=3,l=1,m=+1; (5) n=2,l=0,m=-1; (6) n=2,l=3,m=+2