设A是n阶矩阵,A=½E,则 |A|=( )。
A: (1/2)^n
B: 2^n
C: 1/2
D: 2
A: (1/2)^n
B: 2^n
C: 1/2
D: 2
举一反三
- 设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn若向量组(Ⅲ)线性相关,则______. A: (Ⅰ),(Ⅱ)都线性相关 B: (Ⅰ)线性相关 C: (Ⅱ)线性相关 D: (Ⅰ),(Ⅱ)至少有一个线性相关
- 设`\A`为`\n`阶矩阵,且`\A^3=O`,则矩阵`\(E-A)^{-1}=` ( ) A: \[E - A + {A^2}\] B: \[E + A + {A^2}\] C: \[E + A - {A^2}\] D: \[E - A - {A^2}\]
- A是n阶矩阵,则 A: (一2)n|A*|n B: 2n|A*|n C: (一2)n|A|n一1 D: 2n|A|n一1
- 设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\) A: \({2^{n + 1}} \) B: \({2^{n }}\) C: \({2^{n - 1}}\) D: \(2\)
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]