设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\)
A: \({2^{n + 1}} \)
B: \({2^{n }}\)
C: \({2^{n - 1}}\)
D: \(2\)
A: \({2^{n + 1}} \)
B: \({2^{n }}\)
C: \({2^{n - 1}}\)
D: \(2\)
举一反三
- 设\( A,\;B \) 均为\( n \) 阶方阵,则必有( ). A: \( {(A + B)^2} = {A^2} + 2AB + {B^2} \) B: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \) C: \( \left| {AB} \right| = \left| A \right|{\kern 1pt} \left| B \right| \) D: \( {\left( {AB} \right)^{\rm T}} = {A^{\rm T}}{B^{\rm T}} \)
- 设\( A \) 为 \( n \)阶方阵且 \( \left| A \right| \ne 0 \),则 \( {(2A)^{ - 1}} = \)( ) A: \( {1 \over 2}{A^{ - 1}} \) B: \( {2^{n - 1}}{A^{ - 1}} \) C: \( {2^n}{A^{ - 1}} \) D: \( 2{A^{ - 1}} \)
- 设\( \alpha {\rm{ = }}\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right)\;A = \alpha {\alpha ^{T,}} \) ,则\( \left| {I - {A^n}} \right| = \) ( ) A: \( 1 + {2^n} \) B: \( 1 - {2^n} \) C: \( 1 + {3^n} \) D: \( 1 - {3^n} \)
- 设 \( A \)为 \( n \)阶方阵,且\( \left| A \right| = a \ne 0 \) ,则 \( \left| { { A^ * }} \right| = \)( ) A: \( a \) B: \( {1 \over a} \) C: \( {a^{n - 1}} \) D: \( {a^n} \)
- 设\( A \) 为 \( n \)阶方阵,则 \( \left| {5A} \right| = 5\left| A \right| \).