在平面\( xoz \)内一动点,它与原点的距离等于它与点\( (5, - 3,1) \)的距离,此动点的轨迹方程为( )
A: \( \left\{ {\matrix{ {10x - 2z - 35 = 0} \cr {y = 9} \cr } } \right. \)
B: \( \left\{ {\matrix{ {10x + 2z - 35 = 0} \cr {y = 9} \cr } } \right. \)
C: \( \left\{ {\matrix{ {10x - 2z + 35 = 0} \cr {y = 9} \cr } } \right. \)
D: \( \left\{ {\matrix{ {10x + 2z + 35 = 0} \cr {y = 9} \cr } } \right. \)
A: \( \left\{ {\matrix{ {10x - 2z - 35 = 0} \cr {y = 9} \cr } } \right. \)
B: \( \left\{ {\matrix{ {10x + 2z - 35 = 0} \cr {y = 9} \cr } } \right. \)
C: \( \left\{ {\matrix{ {10x - 2z + 35 = 0} \cr {y = 9} \cr } } \right. \)
D: \( \left\{ {\matrix{ {10x + 2z + 35 = 0} \cr {y = 9} \cr } } \right. \)
举一反三
- 曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)
- 曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
- 设矩阵\(A = \left( {\matrix{ \matrix{ x \cr 0 \cr y \cr} & \matrix{ 0 \cr 2 \cr 0 \cr} & \matrix{ y \cr 0 \cr - 2 \cr} \cr } } \right)\)的一个特征值为\(-3\),且\(A\)的三个特征值之积为\(-12\),则\(x =\)______
- 向量组\(\left( {\matrix{ { - 1} \cr 3 \cr 1 \cr } } \right),\left( {\matrix{ 2 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 4 \cr 1 \cr } } \right) \)线性相关.
- 下列函数中,( )是初等函数. A: \(y = \arcsin ({x^2} + 2)\) B: \(f(x) = \left\{ \matrix{ 0,x \notin Q \ \cr 1,x \in Q \ \cr} \right.\) C: \(y = \sqrt { - {x^2} + 1} \) D: \(f(x) = \left\{ \matrix{ {x^2},0 \le x < 1 \ \cr x + 1,x > 1 \ \cr} \right.\)